

BMP Testing for Erosion and Sediment Control

Contract No. 480-12-ESC-4008 (Log #2278-02-50)

FINAL REPORT

October 2012 (Revised August 21, 2014)

<u>Submitted to</u>: Georgia Soil and Water Conservation Commission (GSWCC) PO Box 1665 Athens GA 30603

> Attn: Lauren Zdunczyk lzdunczyk@gaswcc.org

> Submitted by: TRI/Environmental, Inc. 9063 Bee Caves Road Austin, TX 78733

C. Joel Sprague Principle Investigator

James E. (Jay) Sprague Laboratory Director, TRI's DDRF

TABLE OF CONTENTS

1.	Overview of the Project	1
1.1	Overview	1
1.2	Why ASTM Standard Test Procedures?	1
1.3	Objectives	1
2.	Overview of Standard Test Procedures for SRDs	2
2.1	Basic Index Tests for QC and "Bench-marking" of Tested Products	2
2.1.1	Basic Mechanical Index Properties	2
2.1.1.1	Mass per Unit Area	2
2.1.1.2	Thickness	2
2.1.1.3	Tensile Strength	2
2.1.1.4	3-Dimensional Structures	2
2.1.2	Basic Hydraulic Index Properties	2
2.1.2.1	Permittivity (a.k.a. Water Flow Rate)	2
2.1.2.2	Apparent Opening Size (AOS)	2
2.1.2.3	Percent Open Area (POA)	3
2.1.3	Basic Durability Index Property	3
2.2	Full-scale Performance Testing	3
2.2.1	SRDs in Perimeter Control Applications	3
2.2.2	SRDs as Check Structures	3
3.	Products Tested and Associated Index Properties	
3.1	Participating Companies and Products	
3.2	Index Testing Results	
4.	Sediment Barrier Performance Testing in accordance with ASTM's WK 11340	5
4.1	Testing Overview	5
4.1.1	Test Setup	
4.1.2	Test Soil	5
4.1.3	Preparation of the Test Slopes	6
414	Installation of Sediment Barrier at the End of the Test Slones	6
4.1.5	Specific Test Procedure	
4.2	Test Results	
4.3	Discussion	9
5.	Check Dam Performance Testing in accordance with ASTM D7208	
51	Testing Overview	14
511	Test Setun	14
512	Test Soil	14
5.1.3	Preparation of the Test Channels	
514	Installation of Check Dams in the Test Channels	15
5.1.5	Specific Test Procedure	
5.2	Test Results	
53	Discussion	16
6.	Conclusions and Recommendations	
Append	lix A. Sediment Barrier Test Reports	
Append	lix B. Check Dam Test Reports	
Append	lix C. Sediment Barrier Test Procedure	
Append	lix D. Check Dam Test Procedure	
Append	lix E. Rainfall Calibration Data	
Append	lix F. Test Soil Characterization	
Append	lix G. Tested Products	

REPORT OF BMP TESTING

for the

GEORGIA SOIL AND WATER CONSERVATION COMMISSION (GSWCC)

1. Overview of the Project

1.1 <u>Overview</u>

The testing program is intended to characterize full-scale, installed performance of commonly used best management practices (BMPs) for sediment control. The specific BMPs are commonly referred to as sediment retention devices, SRDs. The SRDs to be tested include what the GSWCC refers to as sediment barriers and check dams and are to be exposed to conditions relevant to typical installations. This testing will serve as a "baseline" for qualification of future SRDs. Additionally, the "index properties" of the tested materials will be verified and documented along with their associated performance properties. This will facilitate efforts to correlate performance to certain easily measured properties of the SRD components, as well as, to "bench-mark" the performance of a given product to specific index properties.

The testing protocols will, as much as possible, conform to existing or currently proposed ASTM <u>standardized</u> procedures so that future SRDs can be subjected to the same protocols and can easily and reliably be compared to the results of this program.

1.2 <u>Why ASTM Standard Test Procedures?</u>

There is relatively little performance data available for most SRDs and the limited data that is available has generally been developed using widely differing protocols. Thus, it is rarely possible to accurately compare SRD performance data developed on different SRDs at different testing organizations. The solution to this is to define common, or <u>standard</u>, protocols that can be used by all testing organizations.

Additionally, most SRDs are comprised of components that may be easily changed by the manufacturer without understanding the affect the change may have on product performance. At very least, the manufacturer must perform regular quality control (QC) tests on the components used in SRD manufacture, and these QC tests must be consistently run and reported. These QC test results are often used as the basis for QPL listing and must, therefore, be independently verifiable. Thus, it is important that a common, or <u>standard</u>, protocol be used by manufacturer and regulator alike.

1.3 <u>Objectives</u>

The project team will accomplish the following objectives:

- Document easily measureable (index/QC) properties of SRDs for "bench-marking", or relating, the performance results to the component materials used in the SRDs tested.
- Document the actual performance of SRDs under application-specific simulations to provide "baseline" information to compare to performance tests on future products.
- Use test experience and results to recommend preferred test protocols for both QC and performance testing of SRDs used in sediment barrier and check dam applications.
- Assess project results in light of GADOT and GSWCC goals when using these BMPs.

2. Overview of Standard Test Procedures for SRDs

2.1 Basic Index Tests for QC and "Bench-marking" of Tested Products

All product manufacturers must perform a few tests on a very frequent basis so that they can prove that they are keeping their manufacturing processes within preset limits and thereby producing a consistent product. In the manufacturing of SRDs and SRD components, a few basic mechanical properties are routinely measured in the manufacturer's own QC lab.

2.1.1 Basic Mechanical Index Properties

2.1.1.1 Mass per Unit Area – The mass per unit area, also known as the "weight" per square yard of a sample, is an important quality control property. The most commonly used test for SRD components is ASTM D 5261, "Standard Test Method for Measuring Mass per Unit Area of Geosynthetics."

2.1.1.2 Thickness – Thickness is another important quality control property. To this end, the following standardized test method for SRD components is available: ASTM D 5199, "Standard Test Method for Measuring Thickness of Geosynthetics."

2.1.1.3 Tensile Strength – Tensile strength is the other primary quality control property measured on most SRD components. Arguably, tensile strength may also be important if an SRD is subject to the weight of sediments or the pressures associated with impounding runoff. The following standardized test method is most commonly used: ASTM D 4632, "Standard Test Method for Grab Breaking Load and Elongation of Geosynthetics."

2.1.1.4 3-Dimensional Structures – Many SRDs are 3-dimensional products (i.e. wattles, bales, etc.), thus non-standard procedures are currently used to measure such things as density (or unit weight per length) and circumference.

2.1.2 Basic Hydraulic Index Properties

The most unique thing about SRD's is that, typically, for them to be very effective in retaining sediment they must also impound most of the runoff. Conversely, for them to freely pass runoff, they have to be allowed to pass a significant amount of sediment. Neither of these extremes is usually preferred, so the user has to determine the proper balance of retaining sediment while permitting seepage. Thus, a basic knowledge of the hydraulic properties that characterize the openings and flow capacity of the SRD components is essential to product selection and to manufacturing consistency.

2.1.2.1 Permittivity (a.k.a. Water Flow Rate) – Permittivity is a geotextile term that relates to the vertical water flow capacity of the material. It is often reported as gallons per minute per square foot of material and uses clear water. The standard test method is ASTM D 4491, "Standard Test Methods for Water Permeability of Geotextiles by Permittivity".

2.1.2.2 Apparent Opening Size (AOS) – The measure of the approximate largest (d85) size opening in the fabric is called apparent opening size (AOS). The standard test method is ASTM D 4751, "Standard Test Method for Measuring the Apparent Opening Size of Geosynthetics".

2.1.2.3 Percent Open Area (POA) – While the AOS is a good indicator of a geotextile's ability to retain sediments when the geotextile has lots of varying sized openings – such as with a nonwoven geotextile – a woven geotextile can have a few larger openings and a lot of very small ones making it prone to clogging even though the AOS test may indicate that it has relatively large openings. To make sure it has enough openings, the overall percent of open area can be determined using a light box. Though this test is not standardized by ASTM for geotextiles, there is a Corps of Engineers protocol that has been successfully used for decades.

2.1.3 *Basic Durability Index Property* – UV Resistance

Another unique thing about SRD's is that, typically, they are exposed to the degrading effects of sunlight for extended periods. The ultraviolet portion of sunlight degrades plastics. Thus, since SRDs frequently are composed of polymeric materials, their ability to resist degradation when exposed to ultraviolet light is commonly documented via lab testing. The most common standard accelerated lab test, ASTM D 4355, which uses a Xenon Arc light source, includes 500 hrs or more of continuous exposure. Unfortunately, because of the length of time and associated costs associated with this testing, it is not practical as either a QC test or a "bench-mark" test.

2.2 <u>Full-scale Performance Testing</u>

As noted earlier, the actual performance of many SRDs is system or installation dependent. Therefore a large-scale test that can incorporate full-scale "as installed" conditions is the ideal evaluation procedure. Recently these needs have been addressed with the issuance of two large-scale standard test methods: ASTM D 7351 and ASTM D 7208.

2.2.1 SRDs in Perimeter Control Applications

The most common SRDs, including silt fences and wattles, are used as so-called "perimeter devices" around relative small building sites to intercept modest sheet flows when no obvious low point or ponding capacity exists on-site. Characterization testing associated with this application is described in work item, WK11340, now making its way through the ASTM process. Testing is a derivation of ASTM D 6459, Large-scale Slope Erosion Testing, but permits a flatter slope and calls for a lighter rainfall.

2.2.2 *SRDs as Check Structures*

SRDs have been used to slow, or "check", concentrated flows to make them less erosive until the associated channel can vegetate sufficiently to resist flow erosion. Critical elements of this protection are the ability of the temporary check structure to: (a.) slow and/or pond runoff to encourage sedimentation, thereby reducing soil particle transport downstream, (b.) trap soil particles upstream of a structure, and (c.) decrease soil erosion. ASTM D 7208, "*Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion*" has been developed to simulate this condition. It uses full-scale channel flow (up to 3 cubic feet per second) in a trapezoidal channel with check structure(s) installed.

3. Products Tested and Associated Index Properties

3.1 Participating Companies and Products

Table 1 presents the products used in testing along with the company and contact. Companies and products were randomly chosen from approved product listings of the GADOT and GSWCC.

3.2 Index Testing Results

Table 2 presents a summary of index testing results for the products used in testing. Detailed test reports are included in Appendix A.

Test	Company / Product Identification	SRD Type		Test	Company / Product Identification	SRD Type	
SB	Silt Saver / BSRF	Silt Fence - GSWCC C Alt.		SB	GeoFabrics / GFG-B	Silt Fence – GADOT Type B	
SB	Belton / Beltech 1935	Silt Fence – GADOT Type A		SB	Belton / Beltech 1935	Silt Fence – GADOT Type B	
SB	Willacoochee / 1215 or 1216	Silt Fence – GADOT Type A		SB	Filtrexx Filter Soxx	Silt Fence - GSWCC Alt.	
SB	Propex / Geotex 111F	Silt Fence – GADOT Type C		SB	Straw Bales	GSWCC	
SB	ThraceLinq / GRF-400EO	Silt Fence – GADOT Type C		CD	Filtrexx Filter Soxx	GSWCC Alt.	
SB	Ten Cate / FW402	Silt Fence – GADOT Type C		CD	Straw Bales	GSWCC / GADOT	
SB	Hanes / GASF-A	Silt Fence – GADOT Type A		CD	Stone Check Dam	GSWCC / GADOT	
SB	DDDErosion / GA-CSA	Silt Fence - GADOT C-System		CD	Fabric on Posts	GADOT Type C	
SB	ErosionTech / C-System	Silt Fence – GADOT C-System	Key: SB = sediment barrier test; CD = check dam test				

Table 1. Participating Companies and Products

Table 2. Specifications and Index Testing Results

	Type A	Silt Fence		Α	19	35	GAS	SF-A	1215		
Property	Units	Spec	Test	Spec	Published	Tested	Published	Tested	Published	Tested	
Tensile	lb	min	D4632	120 x 100	140 x 130	175 x 157	124 x 124	167 x 127	175 x 130	173 x 119	
Elong	%	max	D4632	40	20 x 14	31 x 20	15 x 15	25 x 22	8 x 8	26 x 23	
AOS	mm	max size	D4751	0.6	0.85	0.539	0.6	0.579	0.6	0.607	
Flow	gpm/ft ²	min	GDT 87	25	17.5	22.9	8	111	90	85	
POA	%	-	-	-	-	3	-	16	-	8	
Type B Silt Fence				В	19	35	GFG	G-B			
Property	Units	Spec	Test	Spec	Published	Tested	Published	Tested			
Tensile	lb	min	D4632	120 x 100	140 x 130	175 x 157	n/a	232 x 171			
Elong	%	max	D4632	40	20 x 14	31 x 20	n/a	21 x 16			
AOS	mm	max size	D4751	0.6	0.85	0.539	n/a	0.465			
Flow	gpm/ft ²	min	GDT 87	25	17.5	23	n/a	169			
POA	%	-	-	-	-	3	n/a	7			
	Type C S	Silt Fence		С	FW	402	11	1F	400	EO	
Property	Units	Spec	Test	Spec	Published	Tested	Published	Tested	Published	Tested	
Tensile	lb	min	D4632	260 x 180	365 x 200	451 x 256	370 x 220	351 x 259	365 x 200	458 x 262	
Elong	%	max	D4632	40	24 x 10	42 x 76	20 x 15	20 x 12	24 x 10	45 x 21	
AOS	mm	max size	D4751	0.6	0.43	0.49	0.6	0.416	0.425	0.505	
Flow	gpm/ft ²	min	GDT 87	70	145	394	115	131	145	585	
POA	%	-	-	-	10	28	8	18	10	21	
	C-System	Silt Fence		С	GA-	CSA	ET-C	GA-C			
Property	Units	Spec	Test	Spec	Published	Tested	Published	Tested			
Tensile	lb	min	D4632	260 x 180	n/a	364 x 201	268 x 180	296 x 181			
Elong	%	max	D4632	40	n/a	21 x 15	40	19 x 14			
AOS	mm	max size	D4751	0.6	n/a	0.416	0.425	0.417			
Flow	gpm/ft ²	min	GDT 87	70	n/a	171	70	114			
POA	%	-	-	-	n/a	30	n/a	14			
	GSWCC A	lt Silt Fence		C-Alt	BS	RF]				
Property	Units	Spec	Test	Spec	Prev. Test	Tested					
Tensile	lb	min	D4632	120 x 100	421 x 352	105 x 90					
Elong	%	max	D4632	40	97 x 100	96 x 117					
AOS	mm	max size	D4751	0.6	0.099	0.164					
Flow	gpm/ft ²	min	GDT 87	25	78	112					
POA	%	-	-	-	n/a	n/a	J				

4. Sediment Barrier Performance Testing in accordance with ASTM's WK 11340

4.1 <u>Testing Overview</u>

Sediment Barriers were tested in accordance with ASTM's WK11340 (as of Feb 2012) except the slope of the test plots was modified to be 3:1, had a 40 ft slope length, and index tests were run on each material. The rainfall sequence for sediment barriers was run according to ASTM D 6459 - 2 in/hr, 4 in/hr, and 6 in/hr each for 20 minutes. The rain water was tested for turbidity. The P-Factor was calculated and reported in accordance with ASTM WK 11340. The test soil was classified as a Sandy Clay as shown on the USDA soil triangle. Index tests were run as follows:

- Index tests on 2-dimensional (geotextile-type) products will include mass/area, thickness, tensile strength, permittivity (flow), Apparent Opening Size, and Percent Open Area (of woven geotextiles;)
- Index tests on 3-dimensional (wattle-type) products will include mass/volume, circumference/perimeter, and relevant component properties like netting tensile strength.

4.1.1 *Test Setup*

The large-scale sediment barrier testing reported herein was performed in accordance with WK11340 modified as necessary to accommodate the selected products, on 3:1 slopes using sandy clay test plots measuring 27 ft long x 8 ft wide. The simulated rainfall was produced by "rain trees" arranged around the perimeter of each test slope. Each rain tree has four sprinkler heads atop a 15 ft riser pipe. The rainfall system has been calibrated prior to testing to determine the number of sprinkler heads and associated pressure settings necessary to achieve target rainfall intensities and drop sizes. The target rainfall intensities are 2, 4, and 6 in/hr and are applied in sequence for 20 minutes each. Three replicate test slopes with the perimeter SB installed at the bottom were tested. The sediment retention provided by the product tested is obtained by comparing the protected slope results to control (bare soil) results. Tables and graphs of rainfall versus soil loss are generated from the accumulated data.

Figure 1. Test Slopes (Control Setup)

Figure 2. "Rain Trees" around Test Slopes

4.1.2 Test Soil

The test soil used in the test plots had the following characteristics.

Soil Characteristic	Test Method	Value
% Gravel		0
% Sand	ASTM D 422	49.2
% Silt	ASTM D 422	12.6
% Clay		38.2
Liquid Limit, %	ASTM D 4318	50
Plasticity Index, %	ASTM D 4318	26
Soil Classification	USDA	Sandy Clay
Soil Classification	USCS	Sandy Fat Clay
K-Factor	WK11340	0.03

Table 3. TRI Sandy-Clay Characteristics

4.1.3 Preparation of the Test Slopes

The initial slope soil veneer (12-inch thick minimum) is placed and compacted. Compaction is verified to be 90% (\pm 3%) of Proctor Standard density using ASTM D2937 (drive cylinder method). Subsequently, the test slopes undergo a "standard" preparation procedure prior to each slope test. First, any rills or depressions resulting from previous testing are filled in with test soil and subject to heavy compaction. The entire test plot is then tilled to a depth not less than four inches. The test slope is then raked to create a slope that is smooth both side-to-side and top-to-bottom. Finally, a steel drum roller is rolled down-and-up the slope 3 times proceeding from one side of the plot to the other. The submitted erosion control product is then installed using the technique acceptable to / recommended by the client. For this testing, TRI applied the product to the slopes.

4.1.4 Installation of Sediment Barrier at the End of the Test Slopes

Each sediment barrier was installed as directed by the client. For the tests reported herein, the sediment barrier installations were in accordance with the GSWCC's Manual for Erosion and Sediment Control in Georgia ("the Manual") or manufacturer's specifications. The products chosen for testing by the laboratory are listed in Table 1. The specific installations included:

- 1. Three Type A fabrics from GADOT QPL 36. (36-inch wide)
 - Install according to specifications in the Manual using wood posts
 - Wood posts shall be oak and 1.5" x 1.5" and 4ft in length.
- 2. Three Type C fabrics from GADOT QPL 36. (36-inch wide)
 - Install according to specifications in the Manual
- 3. Two C-Systems from GADOT QPL 36. (36-inch wide)
 - Install according to manufactures specifications
- 4. One Type C Silt Fence Alternative from the GSWCC Approved Products List.
 - Install according to manufactures specifications
- 5. Two Type B fabrics from GADOT QPL 36. (24-inch wide)
 - Install according to specifications in the Manual using wood posts
 - Wood posts shall be 2" x 2" soft wood or 1" x1" hardwood and 3ft in length.
- 6. One Type B Silt Fence Alternative from the GSWCC Approved Products List:
 - Compost Filter Sock install according to manufactures specifications (~12-inch diameter, 25 lbs/ft; approx. 9" high x 16" wide installed).
- 7. Straw bales installed per the Manual (42"L x 18"H x 14"W (a) 26.5 lbs = 4.3 lbs/ft³).

4.1.5 Specific Test Procedure

Immediately prior to testing, rain gauges are placed at the quarter points (i.e. 10, 20, 30 ft) on the slope. The slope is then exposed to sequential 20-minute rainfalls having target intensities of 2, 4, and 6 inches per hour. All runoff is collected during the testing. Additionally, periodic sediment concentration grab samples are taken and runoff rate measurements are made. Between rainfall intensities, the rainfall is stopped and rainfall depth is read in the six rain gauges, valves are adjusted to facilitate the subsequent rainfall intensity, and empty collection vessels are positioned to collect subsequent runoff. After allowing for sediments to settle, water is decanted from the collected runoff. The remaining sediments are collected and dried to determine total soil loss. Pictures of prepared and end-of-test slopes are shown in Figures 3 through 8.

Figure 3. Typical Prepared Control Slope

Figure 5. Control End-of-Test

Figure 7. Type C End-of-Test

Figure 4 Typical Prepared Slope & Sediment Barrier Installation

Figure 6. Type A End-of-Test

Figure 8. C-System End-of-Test

4.2 <u>Test Results</u>

The Practice Management (P) Factor from the Revised Universal Soil Loss Equation (RUSLE) of the USDA-ARS Agricultural handbook 703 is the reported performance measure for slopes determined from this testing. The A-Factor, R-Factor, and P-Factor reported herein are related through RUSLE by the following relationship:

$A = R \times K \times LS \times C \times P$

where: A = the computed soil loss in tons per acre (measured/calculated from test);

- R = the rainfall erosion index (measured/calculated from test);
- K = the erodibility of the soil (calculated from control tests);
- LS = the topographic factor (2.02 for 8 x 27 ft slope);
- C = the cover factor = (1.0 for all test slopes); and
- P = the practice factor = ratio of protected slope sediment loss (via seepage through a sediment barrier) to control slope sediment loss (via runoff without sediment barrier). Note: P = 1.0 for the control slope.

Total sediment loss and the associated rainfall depth measured during the testing are the principle data used to determine the P-Factor. Based on the RUSLE, the following steps are followed to derive the P-Factor for the tested product:

1. Using the control test results, the K-Factor is derived by fitting a linear regression to the plot of cumulative "A" to cumulative "R" (see Figure 9). The slope of the regression line is used to calculate the "K", or characteristic erodibility, of the test soil. The regression equation is used to calculate the "A", or soil loss, at R = 231. This is the normalized cumulative R-Factor calculated for the target test events: 2 in/hr for 20 minutes + 4 in/hr for 20 minutes + 6 in/hr for 20 minutes based on the equation:

R-Factor = [total kinetic energy of the storm (E)] x [the max 30-minute Intensity (I)]

- 2. Using the protected test results, a "best fit" regression line is fitted to a plot of cumulative "A" and cumulative "R". The "A", or soil loss, is calculated for R = 231 using the best fit regression equation.
- 3. The P-Factor at R = 231 is then calculated for the protected condition using the following equation:

$$P$$
-Factor = ["A" protected at $R = 231$] / ["A" control at $R = 231$]

The P-Factor thus calculated is the reported performance value. This facilitates product-toproduct comparison of test results at a common point of the storm event. Additionally, using the regression equations for the protected and the control conditions, the users of the test report can evaluate performance at other points in the model storm by selecting the R factor (and the corresponding A-Factor) that may fit local conditions and calculating the ratio.

Table 4 summarizes the test data and associated P-Factor calculations for all the tests performed.

Soil Loss vs RUSLE R (Control Testing of TRI - Sandy Clay; 3:1 Slope)

Figure 9. Cumulative Plot of Control Tests

4.3 <u>Discussion</u>

When the data in Table 4 is presented graphically, as shown in Figures 13 through 16, some relationships between fabric index properties and installed system performance measurements are suggested. In general, lower system seepage rates correlate with lower system sediment loss rates. Related to this, lower fabric permittivity rates parallel lower system seepage rates and thus lower sediment loss, and higher fabric percent open area (for woven fabrics) correlates with maintaining higher system seepage rates along with associated higher sediment loss rates.

Following are the specific correlations between fabric properties and system performance:

- Fabric Percent Open Area vs. System Seepage: $R^2 = 0.79$
- Fabric Permittivity vs. System Seepage: $R^2 = 0.97$
- Fabric Permittivity vs. System Soil Loss: $R^2 = 0.94$
- Fabric Apparent Opening Size vs. System Soil Loss: $R^2 = 0.16$
- Fabric Percent Open Area vs. System Soil Loss: $R^2 = 0.92$

It is not possible to make similar comparisons for non-fabric systems, since there are no standardized index tests for these 3-dimensional (3-D) materials. Still, it would be likely that these 3-D systems have lower open area and size (i.e. straight-thru open spaces) but as high or higher flow (similar to permittivity). This suggests that 3-D structures may be able to provide superior balance of properties (greater filtration and greater flow) as long as there is no piping, undermining, or overtopping. Testing of the Type B (shorter) systems suggests that these systems are more susceptible to piping, undermining, and/or overtopping.

Table 4. Summary Data Table – Protected Slopes

			Doinfall		Test Slope 1]	Fest Slope 2]	Fest Slope 3				Average All	Slopes	
Product	Properties	Values	Event	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses, lbs	Sed. Loss, lbs	Runoff, gal	A-Factor	P-Factor
			2	0.2	0.1	5	0.0	0.0	1	1.8	2.2	7					
Control			4	46.5	45.8	110	62.1	64.0	110	67.3	67.5	114					
-			6	168.4	166.6	223	120.3	119.0	207	129.2	126.8	211					
•	TOTAL			215	213	338	182	183	318	198	197	332	199	197	329	13.880	1
	AOS, µm	164	2	0.08	0.025	7	0.2	0.043	7	0.01	0.044	4					
BSRF	Permittivity, gpm/ft ²	112	4	0.71	0.489	51	0.76	0.597	56	0.87	0.709	68					
	POA. %	n/a	6	1.4	1.185	102	1.16	1.194	115	1.74	1.379	126					
	TOTAL		, , , , , , , , , , , , , , , , , , ,	2	2	160	2	2	178	3	2	198	2.3	1.9	179	0.126	0.009078
	AOS. um	416	2	0.13	0.13	4	0.21	0.21	9	0.26	0.26	5					
GA-CSA	Permittivity gpm/ft ²	171	4	2.31	2.38	79	2.44	2.48	74	3.01	2.89	78					
011 0011	POA %	22.8	6	4 74	4 53	140	4 71	4 89	146	47	4 63	145					
	TOTAL	22.0	Ũ	7	7	223	7	8	229	8	8	228	75	75	227	0 501	0.036095
[AOS um	416	2	0.2	0.1	7	0	0.02	6	0.07	0.07	5	110	7.0		0.001	0.000070
111E	Permittivity gpm/ft ²	131	4	2.49	2.18	72	2.15	2	67	1.8	2.05	71					
	POA %	18.2	6	5.26	4 97	133	4 44	4 38	128	5.21	5.4	133					
	TOTAL	10.2	0	8	7	212	7		201	7	8	209	72	71	207	0 478	0 034438
	IUIAL		2	2.94	26	15	3.83	3.1	201	2	2	202	1.2	7.1	207	0.470	0.034430
Control			4	46.31	45.6	101	54.16	53.0	96	54.08	54	115					
Control			4	121.87	125.1	213	130.14	125.0	226	149.01	148.0	207					
	TOTAL		0	121.87	123.1	215	130.14	123.9	244	206	205	207	199	197	220	12 880	1
		520	2	0.27	1/3	349	100	0.01	344	200	203	343 7	100	10/	339	13.000	1
1025	AOS, µm	339	2	0.27	0.09	4	0	0.01	2	0.14	0.23	(2					
1935	Permittivity, gpm/it	22.9	4	0.70	1	57	1.17	0.96	00	1.08	1.48	03					
		5.29	0	1.00	1.5	97 159	2.31	2.3	94	2.03	1.00	98	25	2.2	161	0.215	0.01540
	TOTAL	400	2	3	3	150	4	3	150	4	4	100	3.5	3.2	101	0.215	0.01549
EW402	AOS, µm	490	2	0.47	0.3	0	0.45	0.0	14	0.43	0.41	12					
FW402	Permittivity, gpm/it	394	4	2.88	2.7	/0	5.74	5.8	83	2.92	2.7	/0					
	POA, %	27.0	0	5.04	4.8	150	5.30	5.2	155	5.41	5.2	157	0.0	9.6	244	0.5(0	0.040004
	IOIAL		2	8	ð	234	10	10	252	9	8	245	8.9	8.0	244	0.509	0.040994
G + 65 +	AOS, µm	579	2	0.36	0.4	15	0.33	0.4	11	0.44	0.4	10					
GASF-A	Permittivity, gpm/ft ²	111	4	2.29	2.2	66	2.49	2.3	67	2.34	2.1	66					
	POA, %	16.1	6	4.2	4.1	126	4.21	4.05	125	4.16	4.25	128	()			0.442	0.001017
	TOTAL		2	7	7	207	7	7	203	7	7	204	6.9	6.7	205	0.443	0.031916
a			2	4.88	5.04	21	6.15	6.3	19	5.38	5.5	25					
Control			4	61.1	70.4	140	81.28	84.8	150	74.14	76.4	131					
	TOTAL		6	134.2	134.8	213	146.29	149	218	130.23	132.4	209				12.000	
	TOTAL			200	210	3/4	234	240	387	210	214	365	215	222	3/5	13.880	1
	AOS, μm	607	2	0.13	0.11	6	0.3	0.15	7	0.25	0.21	8					
1215	Permittivity, gpm/ft ²	85	4	1.22	1.45	65	1.76	1.75	70	2.39	2.1	72					
	POA, %	8	6	3.55	3.75	120	4.07	3.85	120	4.41	4.3	125					
	TOTAL		1	5	5	191	6	6	197	7	7	205	6.0	5.9	198	0.393	0.028314
-	AOS, µm	417	2	0.14	0.04	9	0.19	0.03	11	0.29	0.05	8					
ET-GA-C	Permittivity, gpm/ft ²	114	4	2.75	1.9	70	1.79	1.95	71	2.12	2.2	69					
	POA, %	14	6	4.31	4.76	135	5.08	4.96	138	4.59	4.2	130					
	TOTAL			7	7	214	7	7	220	7	6	207	7.1	6.7	214	0.441	0.031772
	AOS, µm	505	2	0.12	0.02	7	0.23	0.18	11	0.24	0.27	9					
400-EO	Permittivity, gpm/ft ²	260	4	2.47	2.44	80	3.01	2.9	75	3.05	2.84	82	82				
	POA, %	21	6	5.42	5.2	151	5.76	5.4	148	5.93	5.81	152					
	TOTAL			8	8	238	9	8	234	9	9	243	8.7	8.4	238	0.565	0.040706

					Table	4 (cont u). Summar	y Data Ta	une - rrc	Slected Slo	jes						
			Doinfall		Fest Slope 1		1	Fest Slope 2		Т	Test Slope 3				Average All	Slopes	
Product	Properties	Values	Event	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses	Sed. Loss	Runoff	Sed. Conc. Losses, lbs	Sed. Loss, lbs	Runoff, gal	A-Factor	P-Factor
			2	8.74	8.12	28	7.18	6.6	23	5.56	5.8	20					
Control			4	96.95	93	123	78.77	78	119	74.56	72.2	129					
			6	148.12	147	217	124.54	122	188	127.54	124.4	224					
	TOTAL			254	248	368	210	207	330	208	202	373	224	219	357	13.880	1
CEC D	AOS, µm	465	2	0.18	0.2	6	0.11	0.11	5	0.12	0.1	6					
(24 inch)	Permittivity, gpm/ft ²	169	4	2.55	5.52	55	1.23	1.21	61	1.85	1.8	62					
(24-111011)	POA, %	7	6	3.66	3.7	153	2.97	2.98	149	2.8	2.5	144					
	TOTAL			6	9	214	4	4	215	5	4	212	5.2	6.0	214	0.372	0.026801
1025	AOS, µm	539	2	0.15	0.18	6	0.27	0.2	6	0.12	0.14	4					
(24 inch)	Permittivity, gpm/ft ²	23	4	1.11	0.99	60	0.7	0.8	62	0.89	1.1	57					
(24=111011)	POA, %	3	6	1.92	1.6	178	2.64	1.9	187	3.95	2.35	172					
	TOTAL			3	3	244	4	3	255	5	4	233	3.9	3.1	244	0.207	0.014914
Straw	AOS, µm	n/a	2	0.07	0.06	5	0.03	0.04	4	0.09	0.08	9					
Bales	Permittivity, gpm/ft ²	n/a	4	2.15	1.8	80	2.69	2.7	81	2.67	2.42	87					
(18-inch)	POA, %	n/a	6	6.97	6.9	173	7.37	8.3	166	5.99	6.23	173					
	TOTAL			9	9	258	10	11	251	9	9	269	9.3	9.5	259	0.721	0.051945
Compost	AOS, µm	n/a	2	0.07	0.03	6	0.17	0.1	10	0.2	0.26	14					
Sock	Permittivity, gpm/ft ²	n/a	4	1.21	0.76	74	1.12	0.83	76	1.99	1.65	110					
(12-inch)	POA, %	n/a	6	4.18	3.6	176	4.58	4.3	164	7.21	5.72	176					
	TOTAL			5	4	256	6	5	250	9	8	300	6.9	5.8	269	0.375	0.027017

Table 4 (cont'd). Summary Data Table – Protected Slopes

Figure 10. Type B Silt Fence End-of-Test

Figure 11. Type B Compost Sock End-of-Test

Figure 12. Type B Straw Bales End-of-Test

Figure 14. Seepage vs. Sediment Loss for All Tested Products

Figure 15. Seepage and Related Index Properties for the Tested Products

Figure 16. Sediment Loss and Related Index Properties for the Tested Products

5. Check Dam Testing in accordance with ASTM D7208

5.1 <u>Testing Overview</u>

Check Dams were tested in accordance with ASTM D 7208-06, except the test was run with one replicate each at 0.5, 1.0, and 2.0 cfs instead of 3 replicates at 3 cfs. In addition to testing compost socks, straw bales, and 2"-10" rock checks, a Type C silt fence check was tested. It was installed in a special configuration to control energy dissipation per the GaDOT detail Cd-F specifications. The test soil was classified as a Sandy Clay as shown on the USDA soil triangle. Index tests were run as follows:

- Index tests on 2-dimensional (geotextile-type) products will include mass/area, thickness, tensile strength, permittivity (flow), Apparent Opening Size, and Percent Open Area (of woven geotextiles;)
- Index tests on 3-dimensional (wattle-type) products will include mass/volume, circumference/perimeter, and relevant component properties like netting tensile strength.

5.1.1 Test Setup

The large-scale check dam testing reported herein was performed in accordance with ASTM D7208 modified as described above. The testing is performed in a trapezoidal shaped flume with a 2 ft wide bottom and 2:1 side slopes and a 5% bed slope. The concentrated flow is produced by opening a valve to allow gravity flow from an adjacent pond. Each test is run at a single predetermined flow rate for 30 minutes. The test channel is 60 ft long and includes a 40 ft test section along with a 10ft upstream and a 10 ft downstream transition section. Flow is metered into the channel via a calibrated sharp-crested weir. Nine (9) evenly spaced cross-sections are delineated within the test section and nine (9) evenly spaced measurement points are located at each cross-section. These measurement points enable before and after measurements of the soil surface. Tables and graphs of cross-sectional soil loss are generated from the accumulated data.

Figure 17. Flume Setup (typical control)

Figure 18. Flow into Channel at Weir

5.1.2 Test Soil

The test soil used was the same as used in the sediment barrier tests. See section 4.1.2.

5.1.3 *Preparation of the Test Channels*

The initial channel soil veneer (12-inch thick minimum) is placed and compacted. Compaction is verified to be 90% (\pm 3%) of Proctor Standard density using ASTM D2937 (drive cylinder method). The test channels undergo a "standard" preparation procedure prior to each test. First, any rills or depressions resulting from previous testing are filled in with test soil. The soil surface is replaced to a depth of 1 inch and groomed to create a channel bottom that is level side-to-side with smooth, compacted 2:1 side slopes and at a smooth 5% bed slope. Finally, a trapezoidal form with a vibrating plate compactor is run over the renewed channel surface. The submitted check dam system is then installed as directed by the client.

5.1.4 Installation of Check Dams in the Test Channels

As noted, each check dam was installed as directed by the client. For the tests reported herein, the check dam installations were in accordance with the GSWCC's Manual for Erosion and Sediment Control in Georgia ("the Manual"), except that the silt fence was installed in accordance with GADOT detail Cd-F. The specific installations included:

- 1. Stone check dams using graded size 2-10 inch stone per the Manual (1.4 tons/yd^3) ;
- 2. Straw bales installed per the Manual (42"L x 18"H x 14"W @ $26.5 \text{ lbs} = 4.3 \text{ lbs/ft}^3$);
- 3. Compost Filter Socks installed per manufacturer's requirements (~12-inch diameter, 25 lbs/ft; approx. 9" high x 16" wide installed);
- 4. Fabric from the Georgia Department of Transportation's (GA DOT) Qualified Product List 36. Installed per the GA DOT specifications for the check dam composed of synthetic fiber fabric with reinforced wire post and bracing placed in ditches in a special configuration which controls energy dissipation. GA DOT detail Cd-F

5.1.5 Specific Test Procedure

Immediately prior to testing, the initial soil surface elevation readings are made at predetermined cross-sections. The channel is then exposed to the predetermined flow rate for 30 minutes. During the testing, flow depth and corresponding flow velocity measurements are taken at the predetermined cross-section locations. At the end of 30 minutes, the flow is stopped and soil surface elevation measurements are made to facilitate calculation of soil loss. Pictures of channel preparation are shown in Figures 19 and 20. Pictures of typical channel flows are shown in Figures 21 thru 24.

Figure 19. Compaction of Veneer

Figure 20. Channel Forming (typical)

5.2 <u>Test Results</u>

Soil loss and the associated flow depth and velocity measurements made during the testing are the principle data used to determine the performance of the product tested. This data is entered into a spreadsheet that transforms the soil gain/loss measurements into related soil accretion and loss volumes using cut/fill calculations based on the Simpson Rule. From this data a Soil Accretion Index (SAI) and a Clopper Soil Loss Index (CSLI) are determined. Data and calculations are summarized for each test in Table 5.

Figure 21. Compost Sock Check Structure

Figure 23. Straw Bale (NRCS) Check Structure

Figure 22. Rock Check Structure

Figure 24. Silt Fence Check Structure

5.3 Discussion

When the data in Table 5 is presented graphically, as shown in Figures 25 and 26, some relationships between check dam types and installed system performance measurements are suggested. In general, as a check dam gets taller it may be able to increasingly reduce channel soil loss by creating greater ponding and, thus, greater slowing of water. Yet, in the process, the check dam must provide greater structural integrity and adjacent scour resistance. The original straw bale system and the silt fence system both offered taller damming, but even at the lowest flow level they provide insufficient structure integrity and scour resistance to function effectively. Conversely, the compost sock, rock check, and the enhanced (NRCS) straw bale systems provided the necessary balance between damming and scour resistance to perform effectively under all flow levels.

Table 5. Summary Data Table – ASTM D7208	Channel Tests
--	---------------

Tested System (0.5 cfs)	Total Soil Gain, ft ³	Total Soil Loss, ft ³	Total Wetted Area, ft ²	SAI	CSLI	Net	Net % of Unchecked	Obser- vations	Approx. Installation Time, min.
Control (Unchecked Channel)	0.00	-2.53	3.84 95.22	0.00 0.00	-65.86 -2.65	-65.86 -2.65	100 100		0
Straw Bales (14" High / GSWCC Install.)	2.99	-9.68	12.60 134.15	23.726 2.23	-76.83 -7.22	-53.10 -4.99	81 188	Blowout	30
Straw Bales (14" High / GSWCC Install Retest)	3.74	-6.24	11.07 127.94	33.802 2.93	-56.40 -4.88	-22.59 -1.96	34 74	Blowout	30
Straw Bales (14" High / NRCS Install.)	2.33	-2.34	16. 62 152.30	14.034 1.53	-14.10 -1.54	-0.07 -0.01	0 0		60
Compost Sock (9" High)	0.28	-1.21	9.01 118.20	3.083 0.24	-13.39 -1.02	-10.31 -0.79	16 30		10
Rock + Geotextile (15" High)	0.97	-1.55	9.24 118.92	10.509 0.82	-16.81 -1.31	-6.31 -0.49	10 18		60
Type C Silt Fence (21" High / GSWCC Install.)	0.77	-4.14	8.60 116.02	9.001 0.67	-48.14 -3.57	-39.14 -2.90	59 109	Blowout	240
Type C Silt Fence (21" High / Retest)	2.90	-4.78	11.02 128.42	26.35 2.26	-43.40 -3.73	-17.05 -1.46	26 55	Blowout	240

Tested System (1.0 cfs)	Total Soil Gain, ft ³	Total Soil Loss, ft ³	Total Wetted Area, ft ²	SAI	CSLI	Net	Net % of Unchecked	Obser- vations	Approx. Installation Time, min.
Control	0.00	-4.07	5. 63 102.27	0.000 0.00	-72.27 -3.98	-72.27 -3.98	100 100		0
Straw Bales (14" High / NRCS Install.)	2.93	-2.54	21.33 172.44	13.718 1.70	-11.92 -1.47	1.79 0.22	-2 -6		60
Compost Sock (9" High)	0.62	-1.55	10.01 121.93	6.230 0.51	-15.52 -1.27	-9.29 -0.76	13 19		10
Rock + Geotextile (15" High)	2.87	-2.94	12.94 134.62	22.180 2.13	-22.70 -2.18	-0.52 -0.05	1 1		60

Tested System (2.0 cfs)	Total Soil Gain, ft ³	Total Soil Loss, ft ³	Total Wetted Area, ft ²	SAI	CSLI	Net	Net % of Unchecked	Obser- vations	Approx. Installation Time, min.
Control	0.00	-6.79	8.15 112.43	0.045 0.00	-83.26 -6.04	-83.21 -6.03	100 100		0
Straw Bales (14" High / NRCS Install.)	2.91	-5.13	26.92 196.46	10.827 1.48	-19.04 -2.61	-8.22 -1.13	10 19		60
Compost Sock (9" High)	2.19	-3.90	11.20 126.12	19.535 1.73	-34.85 -3.09	-15.32 -1.36	18 23		10
Rock + Geotextile (15" High)	2.22	-3.66	15.27 143.53	14.518 1.54	-23.97 -2.55	-9.45 -1.01	11 17		60

Striked-through values revised 8/21/14.

6. Conclusions and Recommendations

6.1 Sediment Barrier Performance Testing in accordance with ASTM's WK 11340

Figure 27 summarizes the results of all sediment barrier testing. The figure is similar to Figure 14, but instead of plotting system seepage vs. sediment loss, it relates seepage to P-Factor which is the sediment loss for the protected condition divided by the sediment loss from the control condition. This is the reported performance value. Figure 27 also shows suggested performance envelopes for "High Retention" and "High Flow" systems, respectively. Clearly, a lower P-Factor is generally associated with the High Retention systems, while High Flow systems typically have higher seepage rates. Table 6 shows how these performance limits could be incorporated into the existing GADOT specifications for silt fence fabrics. Straw bales are not recommended as sediment barriers for slopes greater than or equal to 3:1. Generally, the test results agree with the GADOT and GSWCC goals of specifying high retention systems for applications that can accommodate the associated ponding and high flow systems where ponding would create a hazard or exceed the available area.

Figure 27. Seepage vs. P-Factor for All Tested Products

Property	Units	Spec	Test	Type A & B	Type C	Alt. Systems
Tensile	lb	min	D4632	120 x 100	260 x 180	Properties and
Elong	%	max	D4632	40	40	Installation
AOS	mm	max size	D4751	0.6	0.6	Guidelines To
Flow	gpm/ft ²	min	D4491	25	70	Be Provided By
POA	%	min	Light Projection	-	10	Manufacturer
Large-scale	P-Factor	max	WK11240	0.03	0.045	TBD
Performance	gals min		WK11540	150	200	TBD

Table 6. Recommended Revised Material Specifications

6.2 Check Dam Testing in accordance with ASTM D7208 (modified)

Figure 28 summarizes the results of check dam testing associated with systems that did not experience some type of failure during testing. Both the single-row straw bale and "zig-zag" silt fence installations experienced significant undermining under the lowest flow events, and thus are considered undesirable alternatives. Figure 28 presents the "net" of soil accretion and soil loss in the test section and the percent of the control soil loss that this represents. Superimposed on Figure 28 is the suggested performance level (20*30% of control) for acceptable check dam systems. Table 7 shows how this performance limit could be incorporated into the existing GADOT specifications for check dams. Generally, the test results agree with the GADOT and GSWCC goals of specifying check structure systems that provide the structural capacity to resist concentrated flows, ease of installation, and resistance to downstream scour.

Figure 28. Net Soil Loss/Accretion & Percent of Control (Revised 8/21/14)*

Property	Units	Spec	ASTM Test	Straw Bales (NRCS 2-row Installation)	Compost Socks	Rock over Geotextile
Material	-	-	-	Straw	Compost	2-10 inch
Density	pcf	min	-	4.3 lb/ft^{3}	25 lb/ft	1.4 tons/yd^3
Installed Height	in	max	-	14	9	15
Staking / Underlayment	-	min	-	2"x2" wood at 12" c-c	2"x2" wood at 12" c-c	8 oz/sy nonwoven geotextile
Large-scale Performance	%	max	D7208	20 30	20 30	20 30

Table 7. Recommended Revised Specifications

Values in shaded boxes revised 8/21/14

APPENDIX A –SEDIMENT BARRIER TEST REPORTS

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 27-Jul-12 31-Jul-12 31-Jul-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: 1935-B

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.09	6.09	10.09	0.180	0.012	0.02022
Slope 1	3.98	60.17	72.51	0.992	0.080	0.01830
	6.00	178.23	232.44	1.600	0.189	0.01351
			10.09		0.606	
Bare Soil Controls			72.51		4.358	
			232.44		13.970	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.13	6.23	10.50	0.200	0.014	0.02159
Slope 2	4.00	61.99	73.86	0.800	0.068	0.01533
	6.14	186.62	240.69	1.900	0.197	0.01365
			10.50		0.631	
Bare Soil Controls			73.86		4.439	
			240.69		14.466	

				-		
Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
1 101	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	3.57	9.68	0.140	0.010	0.01640
Slope 3	3.96	57.05	71.18	1.100	0.084	0.01973
	6.16	172.18	238.58	2.350	0.244	0.01704
			9.68		0.582	
Bare Soil Controls			71.18		4.278	
			238.58		14.339	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 7/31/12 Quality Review / Date A Texas Research International Company

A-Factor vs. R-Factor (1935-B on Sandy-Clay; 3:1 Slope)

9063 Bee Austin, Texas 78733 / ph: 512 263 2101 / fax: 512 263 2558 / www.GeosyntheticTesting.com

TYPICAL TESTING PICTURES

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 30-May-12 24-May-12 30-May-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: 1215

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 1	2.20	6.32	11.35	0.110	0.007	0.01098
	4.04	64.83	76.58	1.450	0.106	0.02307
	6.04	119.60	238.92	3.750	0.361	0.02517
			11.35		0.682	
Bare Soil Controls			76.58		4.603	
			238.92		14.359	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.28	6.55	12.23	0.150	0.010	0.01391
Slope 2	4.04	69.55	78.25	1.750	0.129	0.02750
	6.08	119.60	242.53	3.850	0.391	0.02685
			12.23		0.735	
Bare Soil Controls			78.25		4.703	
			242.53		14.576	

				-		
Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
1 101	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.20	7.57	11.35	0.210	0.014	0.02097
Slope 3	4.02	71.98	76.04	2.100	0.157	0.03440
	6.16	124.91	244.06	4.300	0.450	0.03067
			11.35		0.682	
Bare Soil Controls			76.04		4.570	
			244.06		14.668	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 6/30/12 Quality Review / Date A Texas Research International Company

A-Factor vs. R-Factor (1215 on Sandy-Clay; 3:1 Slope)

9063 Bee Austin, Texas 78733 / ph: 512 263 2101 / fax: 512 263 2558 / www.GeosyntheticTesting.com

TYPICAL TESTING PICTURES

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 6-Jun-12 7-Jun-12 1-Jun-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: ET-GA-CSystem

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
Plot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 1	2.22	8.57	11.56	0.040	0.003	0.00393
	4.06	70.29	77.54	1.900	0.132	0.02833
	6.00	134.53	238.10	4.760	0.456	0.03187
			11.56		0.695	
Bare Soil Controls			77.54		4.660	
			238.10		14.310	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.22	10.79	11.56	0.030	0.002	0.00294
Slope 2	4.00	70.96	75.92	1.950	0.135	0.02954
	6.04	137.59	237.96	4.960	0.472	0.03303
			11.56		0.695	
Bare Soil Controls			75.92		4.563	
			237.96		14.301	

	Intensity	Dunoff	Cumm D	Soil Loss	Cumm Soil	Average D
Plot	Intensity	KUIIOII	Cumm. K	SOII LOSS	Cumm. Son	Average I
1100	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.26	7.98	12.00	0.050	0.003	0.00472
Slope 3	4.06	68.67	78.38	2.200	0.153	0.03251
	6.04	130.16	240.87	4.200	0.439	0.03033
			12.00		0.721	
Bare Soil Controls			78.38		4.711	
			240.87		14.476	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 6/30/12 Quality Review / Date A Texas Research International Company

A-Factor vs. R-Factor (ET-GA-CSystem on Sandy-Clay; 3:1 Slope)

9063 Bee Austin, Texas 78733 / ph: 512 263 2101 / fax: 512 263 2558 / www.GeosyntheticTesting.com

TYPICAL TESTING PICTURES

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340

STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 18-Jun-12 18-Jun-12 20-Jun-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: GTF 400EO

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
Flot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	7.38	9.68	0.020	0.001	0.00235
Slope 1	4.02	79.98	72.76	2.440	0.167	0.03829
	6.00	151.06	232.98	5.200	0.521	0.03724
			9.68		0.582	
Bare Soil Controls			72.76		4.373	
			232.98		14.002	

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.09	10.67	10.09	0.180	0.012	0.02022
Slope 2	3.96	75.15	71.99	2.900	0.210	0.04845
	6.04	147.57	233.67	5.400	0.577	0.04110
			10.09		0.606	
Bare Soil Controls			71.99		4.326	
			233.67		14.043	

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
Plot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.07	9.27	9.89	0.270	0.018	0.03096
Slope 3	4.00	81.69	72.63	2.840	0.212	0.04849
	5.98	152.01	231.76	5.810	0.607	0.04359
			9.89		0.594	
Bare Soil Controls			72.63		4.365	
			231.76		13.929	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose.

CJS 6/30/12 Quality Review / Date A Texas Research International Company

A-Factor vs. R-Factor (GTF 400EO on Sandy-Clay; 3:1 Slope)

TYPICAL TESTING PICTURES

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

TRI/ENVIRONMENTAL, INC.

A Texas Research International Company

ASTM Proposed - WK11340

STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 16-May-12 18-May-12 9-May-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: FW402

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 1	2.28	7.59	12.23	0.300	0.020	0.02781
	4.07	75.97	79.35	2.700	0.204	0.04282
	6.06	149.89	242.95	4.800	0.531	0.03636
Bare Soil Controls			12.23		0.735	
			79.35		4.769	
			242.95		14.601	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 2	2.03	14.21	9.49	0.600	0.041	0.07170
	3.98	83.32	71.30	3.800	0.299	0.06989
	6.04	155.29	233.10	5.200	0.653	0.04664
Bare Soil Controls			9.49		0.570	
			71.30		4.285	
			233.10		14.009	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 3	2.28	12.22	12.23	0.410	0.028	0.03801
	4.06	75.89	78.80	2.700	0.212	0.04470
	6.06	156.79	242.26	5.200	0.566	0.03885
Bare Soil Controls			12.23		0.735	
			78.80		4.736	
			242.26		14.560	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (FW402 on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340

STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 13-Apr-12 17-Apr-12 20-Apr-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: GA-CSA

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.01	4.26	9.29	0.130	0.009	0.01586
Slope 1	4.06	78.96	73.00	2.380	0.171	0.03894
	6.00	139.78	233.51	4.530	0.479	0.03414
			9.29		0.558	
Bare Soil Controls			73.00		4.387	
			233.51		14.034	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.07	9.28	9.89	0.210	0.014	0.02407
Slope 2	4.07	73.64	74.76	2.440	0.180	0.04014
	6.10	146.29	240.27	4.890	0.513	0.03554
			9.89		0.594	
Bare Soil Controls			74.76		4.493	
			240.27		14.440	

Dist	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average C
PIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.09	4.50	10.09	0.260	0.018	0.02920
Slope 3	4.09	77.94	75.71	3.010	0.223	0.04891
	6.00	145.25	236.56	4.630	0.538	0.03782
			10.09		0.606	
Bare Soil Controls			75.71		4.550	
			236.56		14.217	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose.

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (GA-CSA on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 7-May-12 4-May-12 9-May-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: Beltech 1935

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.22	4.01	11.56	0.090	0.006	0.00883
Slope 1	4.00	56.91	75.92	1.000	0.074	0.01626
	6.08	96.81	239.89	1.500	0.176	0.01223
			11.56		0.695	
Bare Soil Controls			75.92		4.563	
			239.89		14.417	

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.03	1.70	9.49	0.010	0.001	0.00118
Slope 2	4.02	60.46	72.35	0.960	0.066	0.01518
	6.02	93.76	233.51	2.500	0.236	0.01683
			9.49		0.570	
Bare Soil Controls			72.35		4.348	
			233.51		14.034	

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
Flot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.30	7.29	12.45	0.250	0.017	0.02276
Slope 3	3.96	62.76	76.49	1.480	0.118	0.02561
	6.14	98.05	243.09	1.880	0.246	0.01682
			12.45		0.748	
Bare Soil Controls			76.49		4.597	
			243.09		14.609	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (1935 on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 18-Apr-12 12-Apr-12 20-Apr-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: BSRF

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.15	7.34	10.71	0.025	0.002	0.00261
Slope 1	4.00	50.93	74.27	0.489	0.035	0.00783
	6.00	102.15	234.37	1.185	0.116	0.00821
			10.71		0.644	
Bare Soil Controls			74.27		4.464	
			234.37		14.086	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	6.51	9.68	0.043	0.003	0.00503
Slope 2	4.04	55.61	73.28	0.597	0.044	0.00989
	6.04	114.99	235.58	1.194	0.125	0.00882
			9.68		0.582	
Bare Soil Controls			73.28		4.404	
			235.58		14.158	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
Flot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
Slope 3	2.11	3.69	10.29	0.044	0.003	0.00483
	4.21	67.86	79.40	0.709	0.051	0.01074
	6.04	125.84	243.07	1.379	0.145	0.00993
			10.29		0.619	
Bare Soil Controls			79.40		4.772	
			243.07		14.609	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (BSRF on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 15-May-12 23-May-12 24-May-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: GASF-A

Dlot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
Plot	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.11	15.38	10.29	0.390	0.027	0.04291
Slope 1	4.00	66.05	73.45	2.191	0.176	0.03979
	6.04	125.59	235.46	4.103	0.455	0.03215
			10.29		0.619	
Bare Soil Controls			73.45		4.414	
			235.46		14.151	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.28	11.40	12.23	0.400	0.027	0.03709
Slope 2	4.02	66.91	77.71	2.280	0.182	0.03906
	6.12	124.80	243.79	4.050	0.458	0.03126
			12.23		0.735	
Bare Soil Controls			77.71		4.670	
			243.79		14.652	

	Intensity	Dupoff	Cumm D	SoilLoss	Cumm Soil	Average P
Plot	mensity	Kulloll	Cumm. K	SOII LOSS	Cumm. Son	Average 1
1100	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.32	10.15	12.68	0.440	0.030	0.03935
Slope 3	4.07	66.41	80.20	2.100	0.173	0.03587
	6.14	127.66	247.71	4.250	0.462	0.03104
			12.68		0.762	
Bare Soil Controls			80.20		4.820	
			247.71		14.887	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (GASF-A on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Note: The testi

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 25-Jul-12 24-Jul-12 27-Jul-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: GFG-B

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr) (gallons)		Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.17	5.88	10.92	0.200	0.014	0.02076
Slope 1	4.07 54.72		76.84	2.521	0.185	0.04011
	6.20 152.88		247.27	3.700	0.437	0.02941
			10.92		0.656	
Bare Soil Controls			76.84		4.618	
			247.27		14.861	

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr)	(in/hr) (gallons)		(lbs/plot/event	Loss (T/A)	Factor
	2.13	4.57	10.50 0.113		0.008	0.01220
Slope 2	4.02 60.55		74.39	1.210	0.090	0.02014
	5.93	148.72	230.83	2.980	0.293	0.02111
			10.50		0.631	
Bare Soil Controls			74.39		4.471	
			230.83		13.873	

Plot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average P
1 101	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.01	5.67	9.29 0.100		0.007	0.01220
Slope 3	3.92 61.95		69.34	1.800	0.129	0.03103
	5.98 143.61		227.80	2.500	0.299	0.02188
			9.29		0.558	
Bare Soil Controls			69.34		4.167	
			227.80		13.691	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 8/23/12 Quality Review / Date

A-Factor vs. R-Factor (GFG-B on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340

STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 25-Apr-12 25-Apr-12 1-May-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: 111F

Dlot	Intensity Runof		Cumm. R Soil Loss		Cumm. Soil	Average C
FIOL	(in/hr)	(gallons)	Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	6.71	9.68 0.100		0.007	0.01165
Slope 1	3.98 72.07		71.70	2.180	0.155	0.03600
	5.98	132.77	230.66	4.970	0.493	0.03559
			9.68		0.582	
Bare Soil Controls			71.70		4.309	
			230.66		13.863	

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average C
FIOL	(in/hr) (gallons)		Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.03	6.35	9.49 0.020		0.001	0.00240
Slope 2	3.96 67.19		70.78	2.000	0.137	0.03232
	6.02	128.21	231.46	4.380	0.436	0.03131
			9.49		0.570	
Bare Soil Controls			70.78		4.254	
			231.46		13.911	

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average C
Flot	(in/hr) (gallons)		Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.17	4.52	10.92	0.070	0.005	0.00727
Slope 3	4.00	71.39	74.68	2.050	0.144	0.03215
	6.00 132.84		234.79	5.400	0.512	0.03627
			10.92		0.656	
Bare Soil Controls			74.68		4.488	
			234.79		14.111	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 5/31/12 Quality Review / Date

A-Factor vs. R-Factor (111F on Sandy-Clay; 3:1 Slope)

Test Slope Prepared and Fence Installed

After 2 in/hr Event

After 4 in/hr Event

Typical Control Run - Before and After

ASTM Proposed - WK11340 STANDARD TEST METHOD FOR DETERMINATION OF SEDIMENT RETENTION DEVICES (SRDs) PERFORMANCE IN REDUCING SOIL LOSS FROM RAINFALL-INDUCED EROSION DURING PERIMETER CONTROL APPLICATIONS

Client: GSWCC Test Dates: 8-Aug-12 10-Aug-12 16-Aug-12 Rainfall Rates: 2,4,6 in/hr (target) Bed Slope: 3 to 1 Event: 20 minutes at each intensity (60 min. total) Product: Compost Sock

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average P
FIOL	(in/hr) (gallons)		Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	5.51	9.68	9.68 0.030		0.00351
Slope 1	3.98 74.37		71.70	0.760	0.054	0.01248
	6.00 176.40		231.61	3.600	0.299	0.02147
			9.68		0.582	
Bare Soil Controls			71.70		4.309	
			231.61		13.920	

Dlot	Intensity Runoff		Cumm. R	Soil Loss	Cumm. Soil	Average P
1101	(in/hr) (gallons)		Factor	(lbs/plot/event	Loss (T/A)	Factor
	2.05	9.65	9.68	0.100	0.007	0.01170
Slope 2	3.98 75.80		71.70	0.830	0.063	0.01469
	6.06	164.47	234.47	4.300	0.356	0.02526
			9.68		0.582	
Bare Soil Controls			71.70		4.309	
			234.47		14.092	

Plot	Intensity	Runoff	Cumm. R	Soil Loss	Cumm. Soil	Average P
1 101	(in/hr)	(in/hr) (gallons)		(lbs/plot/event	Loss (T/A)	Factor
	2.13	14.06	10.50 0.260		0.018	0.02808
Slope 3	4.09 110.35		76.54	1.650	0.130	0.02826
	6.30 176.44		252.05	5.720	0.519	0.03428
			10.50		0.631	
Bare Soil Controls			76.54		4.600	
			252.05		15.148	

Note: The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose

CJS 8/23/12 Quality Review / Date

A-Factor vs. R-Factor (Compost Sock on Sandy-Clay; 3:1 Slope)

Slope Prepared and Compost Sock Installed

After 2 in/hr Event

After 4 in/hr Event

After 6 in/hr Event

Typical Control Run - Before and After

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX B -CHECK DAM TEST REPORTS

Project: ASTM D 7208: Standard Test Method for Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side	e slopes x -	40-ft long; 5% Bed Slope;
--	--------------	---------------------------

	Client: GSWCC				Product:	Straw Bales with	Wooden Stakes			
	Flow:	0.5 cfs for 3	0 minutes		Test Date:	5/14/2012				_
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf	
	0	0.07	-0.31	0.03	-0.115	1.00	5.93	2.96	0.26	
	5	0.01	-0.47	0.00	-0.189	1.13	12.10	3.08	0.29	
	10	0.07	-0.51	0.02	-0.201	1.25	12.33	2.37	0.32	CHECK STRUCTURE
14" High	15	0.01	-0.36	0.00	-0.127	4.00	17.45	0.23	1.04	&
GADOT	20	1.49	-0.44	0.23	-0.201	7.25	23.51	0.10	1.88	ACCELERATED
Check	25	1.42	-0.14	0.52	-0.017	7.50	23.98	0.10	1.95	DOWNSTREAM OF
Location	30	0.21	-1.28	0.09	-0.517	4.00	17.45	0.30	1.04	CHECK
	35	0.07	-1.07	0.01	-0.403	2.75	15.12	2.65	0.71	
	40	0.07	-2.64	0.02	-0.981	1.37	6.28	3.07	0.36	
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper	
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index	
				2.99	-9.68		134.15	2.23	-7.22	

	Flow:	Flow: 0.5 cfs for 30 minutes			Test Date:	6/7/2012				_
		Soil Gain,	Soil Loss,	Soil Gain,	Soil Loss,			Flow Velocity,		
	Station, ft	in	in.	ft ²	ft ²	Flow Depth, in	Wetted Area, ft ²	ft/s	Shear, psf	
	0	0.02	-0.29	0.00	-0.115	0.94	5.88	2.98	0.25	
RETEST:	5	0.05	-0.18	0.01	-0.079	3.15	15.87	2.43	0.82	
14" High	10	0.75	-0.54	0.23	-0.191	4.41	18.22	1.85	1.15	BLOWOUT UNDER CHECK STRUCTURE
GADOT	15	0.30	-0.40	0.11	-0.150	6.81	22.69	1.80	1.77	æ
Check	20	1.00	-0.03	0.38	-0.014	6.34	21.81	0.41	1.65	ACCELERATED SCOUR
Location	25	0.06	-0.84	0.01	-0.290	1.14	12.13	1.43	0.30	DOWNSTREAM OF
	30	0.05	-0.74	0.02	-0.247	1.26	12.35	1.06	0.33	CHECK
	35	0.02	-0.92	0.01	-0.348	1.77	13.30	1.81	0.46	
	40	0.01	-0.72	0.00	-0.280	0.75	5.70	2.71	0.19	
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper	
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index	
				3.74	-6.24		127.94	2.93	-4.88	

	Flow:	0.5 cfs for 3	0 minutes		Test Date:	7/3/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.11	0.00	-0.036	0.98	5.92	3.00	0.26
	5	0.00	-0.12	0.00	-0.050	0.98	11.83	3.10	0.26
	10	0.10	-0.19	0.03	-0.056	5.31	19.90	1.61	1.38
14" High	15	0.43	-0.40	0.15	-0.147	6.38	21.88	0.78	1.66
NRCS	20	0.47	-0.04	0.16	-0.007	10.16	28.93	0.16	2.64
Check	25	0.61	-0.07	0.23	-0.009	11.46	31.35	0.01	2.98
Location	30	0.00	-0.28	0.00	-0.098	1.85	13.45	2.40	0.48
	35	0.00	-0.26	0.00	-0.095	1.57	12.93	2.90	0.41
	40	0.00	-0.23	0.00	-0.084	1.18	6.10	2.80	0.31
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index
				2.33	-2.34		152.30	1.53	-1.54

CJS 7/5/2012 (Rev. 8/21/14) Quality Review / Date

Project: ASTM D 7208: Standard Test Method for Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Test Date: 6/7/2012

Flow: 0.5 cfs for 30 minutes

Test Date: 7/3/2012

	10711 07000		Date:	5/14/12							S	tart Time:		3:58 PM End Time: 4:28 PM				
	ASTM D7208		Soil:	Sandy C	lay						Target F	low (cfs):			0.50	Slope:	5%	
60 ft l	ong flume 40 ft t	est section	SRD:	Straw Ba	ales		Ins	tallation:	Wooden	Stakes								
	2 ft	wide flume										TEST	DATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								0.00						0.00	
eir widt	h (ft) = 2	w	ater Velocity, ft/s								0.00						0.00	
0 ft	CDEFGH		Flow Rate, cfs	0.00							0.00	0.00					0.00	
			Cross-section 1	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	L	To origina	I Surface Elev, ft	7.510	7.781	8.031	8.042	8.042	8.052	8.031	7.844	7.583	31.696			2.96		8.0
	•	To eroded	d Surface Elev, ft	7.510	7.729	8.073	8.063	8.083	8.094	8.063	7.896	7.583	31.776		Vavg (fps) =	2.96	Bed Max Shear	
			Soil Gain, ft	0.000	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.035	0.104	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	-0.042	-0.021	-0.042	-0.042	-0.031	-0.052	0.000	-0.115	-0.344	Flow (cfs) =	0.50	0.26	0.08
5 ft				ŀ	Avg Bottor	m Gain, ft	0.01	Avg C	lopper So	il Loss, ft	-0.03			(°.)				
			Cross-section 2	A	В	С	D	E	F	G	Н	I	[ft"]	linj	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	7.865	8.063	8.292	8.302	8.313	8.292	8.250	7.948	7.740	32.622			3.08		8.3
		To erodeo	d Surface Elev, ft	7.875	8.073	8.292	8.396	8.406	8.344	8.281	8.010	7.729	0.002	0.005	Vavg (fps) =	3.08	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	-0.189	-0.568	navg =	0.022	Stress (psf)	Water Depth (ft)
10.4		Clo	pper Soil Loss, ft	-0.010	<u>-0.010</u>	0.000	-0.094	-0.094	-0.052	-0.031	-0.062	0.000	0.105	0.000	Flow (cfs) =	0.50	0.29	0.09
10 π				,	AVG BOttor	n Gain, n	0.00	Avg C	opper Sc	li Loss, n	-0.04		[ff ²]	[in]	Veod	V @ 0.04	Neod	To Water Out 4
		To origing	L Surface Eleve ft	9 104	0.065	0.542	0.592	E	P 572	0.542	0.060	0.021	33.769		V @ 0.20	2.27	v @ 0.80	
		To orodo	N Surface Elev, It	0.104	9.244	9.504	9.667	9 699	9.625	9.562	9.244	9.021	33.951		Vova (foc) -	2.37		0.0
		10 CIUUR	Soil Gain #	0.003	0.021	0.000	0.000	0.000	0.000	0.000	0.000	0.021	0.019	0.057	navg (ips) =	0.031	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	nner Soil Loss ft	0.000	0.000	-0.052	-0.083	-0.094	-0.052	-0.021	-0.083	0.000	-0.201	-0.604	Flow (cfs) =	0.50	0.32	0.10
15 ft		0.0	ppor 00ii 2000, it	0.000	Ava Bottor	m Gain. ft	0.01	Avg C	lopper Sc	il Loss. ft	-0.04	0.000			11011 (010) =	0.00	0.02	0.10
			Cross-section 4	A	В	с	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	8.427	8.677	8.917	8.958	8.958	8.938	8.917	8.688	8.396	35.241			0.23		8.7
		To eroded	d Surface Elev, ft	8.417	8.698	8.979	9.021	9.021	8.969	8.938	8.688	8.406	35.366		Vavg (fps) =	0.23		
			Soil Gain, ft	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	navg =	0.695	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	-0.021	-0.063	-0.063	-0.063	-0.031	-0.021	0.000	-0.010	-0.127	-0.380	Flow (cfs) =	0.50	1.04	0.33
20 ft				ŀ	Avg Bottor	m Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.03							
			Cross-section 5	А	в	с	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	8.740	9.010	9.240	9.271	9.313	9.281	9.260	9.083	9.802	36.792			0.1		8.7
		To eroded	d Surface Elev, ft	8.760	9.229	9.271	9.302	9.271	9.240	9.146	9.115	8.885	36.760		Vavg (fps) =	0.10	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.042	0.042	0.115	0.000	0.917	0.233	0.698	navg =	2.375	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	-0.021	-0.219	-0.031	-0.031	0.000	0.000	0.000	-0.031	0.000	-0.201	-0.604	Flow (cfs) =	0.50	1.88	0.60
25 ft				ŀ	Avg Bottor	m Gain, ft	0.12	Avg C	lopper Sc	il Loss, ft	-0.04							
			Cross-section 6	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	8.938	9.188	9.469	9.500	9.510	9.500	9.490	9.323	9.031	37.491			0.1		8.6
		To erodeo	d Surface Elev, ft	8.979	9.177	9.438	9.208	9.208	9.344	9.271	9.271	9.094	0.524	1 572	Vavg (fps) =	0.10	Bed Max Shear	
			Soil Gain, ft	0.000	0.010	0.031	0.292	0.302	0.156	0.219	0.052	0.000	-0.017	-0.052	navg =	2.429	Stress (psf)	Water Depth (ft)
oo (i		Clo	pper Soil Loss, ft	-0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.063	0.017	0.002	Flow (cfs) =	0.13	1.95	0.63
30 ft			O	, , , , , , , , , , , , , , , , , , ,	Avg Bottor	m Gain, ft	0.12	Avg C	lopper So	I LOSS, IT	-0.01		[ft ²]	[in]	Venni	V @ 0.04	Neod	To Water Out 4
		Ta asiairaa	Cross-section /	A	B	0.570	0.040	E	F	G	П (ГО	0.400	38.214		v @ 0.2d	V @ 0.6d	V @ 0.8d	To water Surr, It
		To eroder	I Surface Elev, It	9.125	9.303	9.575	9.040	9.077	9.023	9.646	9.400	9.190	38.641		Vava (fos) -	0.3		9.4
			Soil Gain #	0.000	0.000	0.000	0.000	0.000	0.115	0.042	0.000	0.000	0.090	0.271	nava =	0.532	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	-0.063	-0.448	-0.198	-0.104	-0.073	0.000	0.000	-0.073	0.000	-0.517	-1.552	Flow (cfs) =	0.20	1.04	0.33
35 ft				ŀ	Avg Bottor	m Gain, ft	0.02	Avg C	lopper So	il Loss, ft	-0.11							
			Cross-section 8	A	в	с	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	9.302	9.521	9.792	9.833	9.854	9.823	9.802	9.625	9.375	38.797			2.65		9.7
		To eroded	d Surface Elev, ft	9.292	9.531	10.104	10.094	9.938	9.917	9.802	9.667	9.333	39.191		Vavg (fps) =	2.65	Red May Sheer	
			Soil Gain, ft	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.042	0.009	0.026	navg =	0.047	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	-0.010	-0.313	-0.260	-0.083	-0.094	0.000	-0.042	0.000	-0.403	-1.208	Flow (cfs) =	1.21	0.71	0.23
40 ft				ŀ	Avg Bottor	m Gain, ft	0.01	Avg C	lopper So	il Loss, ft	-0.09							
			Cross-section 9	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	9.604	9.833	10.094	10.146	10.208	10.167	10.104	9.906	9.667	40.049			3.07		10.7
		To eroded	d Surface Elev, ft	9.615	9.823	10.198	10.448	10.823	10.833	10.385	9.896	9.635	41.010	0.077	Vavg (fps) =	3.07	Bed Max Shear	
			Soil Gain, ft	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.010	0.031	0.019	0.057	navg =	0.026	Stress (psf)	Water Depth (ft)
		Clopper Soil Loss, ft -0.010 0.000 -0.104 -0.302 -0.615 -0.667 -0.281 0.000 0.000 -0.981 -2.943 Flow (cfs) = 0.70 0.36					0.11											
Avg Bottom Gain, ft 0.01 Avg Clopper Soil Loss, ft -0.22																		
Soil Gain, in 0.002 0.005				0.005	0.000	0.000	0.002	0.002	0.006	0.001	0.057	v01	fini Ava Cl		Bottom Ga	ain per Xsection, ft =	0.006	
Clopper Soil Los			uper Soli Loss, in	-0.002	-0.015	-0.034	-0.048	-U.U56	-0.053	-0.022	-0.015	-0.001	[rt]	[IN]	Avg Clop	per SOII LC	Section President (-0.220
		Origina	Surface Elev	865.087	1 thru 6:	X-Si	ection Spa	acing, ft =	3		iai Surfac		389.640		7 thru 9:	X-	Section Spacing, It =	10
Tra	pezoidal Analysis	Eroded	oil Gain	2674	0.004	i est s	gauge spa	acing, ft =	-+U	∟rod	Soil Coin		395.082	0.004		les	gauge spacing. ft =	40
		3	CSLI	-3.924	-0,294	hannel w	ridth meas	sured, ft =	4		CSLI	•	-5.760	-0.432		channel	width measured, ft =	4

0.5 cfs Flow

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding with Some Underflow

Increased Ponding, Start Overtopping, Increased Underflow

End-of-test and Post-test With Undermined Bale Removed

		6/7/12							S	tart Time:			3:58 PM	End Time:	4:28 PM			
	ASTM D	7208	Soil	Sandy C	lav						Target F	low (cfs):			0.50	- Slope:	5%	
60 ft lo	ng flume	40 ft test sectio	n SRD:	Straw Ba	ales		Ins	tallation:	Wooden	Stakes								
-	-	2 ft wide flume										TEST	DATA					
	1 2	3	Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								0.00						0.00	
eir width	n (ft) = 2	\	Vater Velocity, ft/s								0.00						0.00	
0 ft	CDEF	G H	Flow Rate, cfs	0.00							0.00	0.00					0.00	
			Cross-section 1	А	В	С	D	Е	F	G	н	Т	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	1.873	2.077	2.333	2.356	2.362	2.339	2.283	2.047	1.808	8.819			2.98		2.3
	•	To erod	ed Surface Elev, ft	1.864	2.113	2.388	2.369	2.362	2.411	2.323	2.051	1.801	8.931		Vavg (fps) =	2.98	Bed May Shear	
			Soil Gain, ft	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.003	0.008	navg =	0.020	Stress (psf)	Water Depth (ft)
		C	opper Soil Loss, ft	0.000	-0.036	-0.056	-0.013	0.000	-0.072	-0.039	-0.003	0.000	-0.115	-0.344	Flow (cfs) =	0.50	0.25	0.08
5 ft				ŀ	Avg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.02		2-					
			Cross-section 2	A	В	С	D	E	F	G	н	I	[ft*]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	1.969	2.185	2.454	2.503	2.552	2.451	2.421	2.149	1.942	9.320			2.43		2.3
		To erod	ed Surface Elev, ft	1.978	2.211	2.470	2.513	2.533	2.487	2.408	2.185	1.939	9.300	0.024	Vavg (fps) =	2.43	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.020	0.000	0.013	0.000	0.003	-0.079	-0.238	navg =	0.056	Stress (psf)	Water Depth (ft)
40.4		C	opper Soil Loss, ft	-0.010	-0.026	<u>-0.016</u>	-0.010	0.000	-0.036	0.000	-0.036	0.000	0.075	0.200	Flow (cfs) =	0.50	0.82	0.26
10 π			0	<i>,</i>	Avg Bottor	m Gain, ft	0.00	Avg C	lopper So	DI LOSS, IT	-0.01		[ft ²]	[in]	V @ 0.04	V @ 0.04	Neod	To Mater Out 4
		To origin	al Surface Elev ft	2 274	2 507	2 530	2 546	2 5 3 9	2 / 93	2 267	2 231	2 021	9.679		V @ 0.20	1.85	V @ 0.84	23
		To erod	ed Surface Elev, ft	1 991	2 247	2.516	2.618	2.635	2.589	2 411	2 231	2.021	9.645		Vavg (fps) =	1.85		2.0
		10 0100	Soil Gain. ft	0.282	0.259	0.013	0.000	0.000	0.000	0.000	0.000	0.007	0.225	0.676	navg =	0.092	Bed Max Shear Stress (psf)	Water Depth (ft)
		C	opper Soil Loss, ft	0.000	0.000	0.000	-0.072	-0.095	-0.095	-0.144	0.000	0.000	-0.191	-0.574	Flow (cfs) =	1.36	1.15	0.37
15 ft				A	Avg Bottor	m Gain, ft	0.06	Avg C	lopper So	oil Loss, ft	-0.05							
			Cross-section 4	А	в	С	D	Е	F	G	н	Т	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	1.785	2.024	2.280	2.323	2.333	2.306	2.283	2.054	1.781	8.698			1.8		1.8
		To erod	ed Surface Elev, ft	1.765	2.087	2.316	2.421	2.415	2.205	2.182	2.051	1.801	8.741		Vavg (fps) =	1.80	Red May Shaar	
			Soil Gain, ft	0.020	0.000	0.000	0.000	0.000	0.102	0.102	0.003	0.000	0.107	0.322	navg =	0.127	Stress (psf)	Water Depth (ft)
		C	opper Soil Loss, ft	0.000	-0.062	-0.036	-0.098	-0.082	0.000	0.000	0.000	-0.020	-0.150	-0.449	Flow (cfs) =	2.04	1.77	0.57
20 ft				ŀ	Avg Bottor	m Gain, ft	0.03	Avg C	lopper So	il Loss, ft	-0.03							
			Cross-section 5	A	В	С	D	E	F	G	н	- I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	1.988	2.264	2.500	2.572	2.592	2.566	2.549	2.343	2.093	9.723			0.41		1.9
		To erod	ed Surface Elev, ft	1.995	2.283	2.493	2.421	2.415	2.362	2.398	2.303	2.073	9.360	1 1 2 2	Vavg (fps) =	0.41	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.007	0.151	0.177	0.203	0.151	0.039	0.020	-0.014	-0.042	navg =	0.530	Stress (psf)	Water Depth (ft)
05.4		C	opper Soil Loss, ft	-0.007	-0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.014	-0.043	Flow (cfs) =	0.43	1.65	0.53
25 ft			Cross section 6	, F	NUG BOTTO	n Gain, n	0.08	Avg C	lopper Sc	C C C	0.00		[ft ²]	[in]	V@0.2d	Vened	V @ 0.94	To Wotor Surf. H
		To origin	al Surface Elev ft	1 788	1 975	2 1 2 3	2 270	2 3 2 3	2 3 3 3	2 316	2 080	1 860	8.634		V @ 0.20	1 43	V @ 0.84	23
		To erode	ed Surface Elev. ft	1.755	1.962	2.402	2.425	2.372	2.418	2.375	2.080	1.867	8.910		Vavg (fps) =	1.43		2.0
			Soil Gain, ft	0.033	0.013	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014	0.043	navg =	0.048	Bed Max Shear Stress (psf)	Water Depth (ft)
		C	opper Soil Loss, ft	0.000	0.000	-0.279	-0.154	-0.049	-0.085	-0.059	0.000	-0.007	-0.290	-0.869	Flow (cfs) =	0.27	0.30	0.10
30 ft				F	Avg Bottor	m Gain, ft	0.01	Avg C	lopper So	oil Loss, ft	-0.07							
			Cross-section 7	А	в	с	D	Е	F	G	н	Т	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	2.087	2.372	2.589	2.664	2.667	2.664	2.621	2.375	2.129	10.045			1.06		2.7
		To erod	ed Surface Elev, ft	2.083	2.365	2.776	2.789	2.779	2.726	2.690	2.356	2.123	10.273		Vavg (fps) =	1.06	Bed Max Shear	
			Soil Gain, ft	0.003	0.007	0.000	0.000	0.000	0.000	0.000	0.020	0.007	0.019	0.057	navg =	0.070	Stress (psf)	Water Depth (ft)
		C	opper Soil Loss, ft	0.000	0.000	-0.187	-0.125	-0.112	-0.062	-0.069	0.000	0.000	-0.247	-0.741	Flow (cfs) =	0.22	0.33	0.10
35 ft				F	Avg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.06		2-					
			Cross-section 8	A	В	С	D	E	F	G	н	I	[ft*]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origin	al Surface Elev, ft	1.604	1.854	2.123	2.165	2.198	2.195	2.156	1.932	1.677	8.477			1.81		2.2
		To erod	ed Surface Elev, ft	1.598	1.844	2.136	2.408	2.369	2.313	2.290	1.932	1.686	0.008	0.023	Vavg (fps) =	1.81	Bed Max Shear	
		0	Soil Gain, ft	0.007	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.348	-1.045	navg =	0.051	Stress (psr)	vvater Deptn (ft)
40 ft			opper Soir Loss, it	0.000	va Bottor	01013	-0.243	-0.171	lopper Sc	illoss ft	-0.08	-0.010			Flow (cis) =	0.55	0.46	0.15
-0 11			Cross-section 9	A	B	C	D.00	F	F	G G	н		[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origin	al Surface Elev. ft	1.916	2.165	2.418	2.454	2.477	2.464	2.461	2.215	1.965	9.297			2.71		2.5
		To erod	ed Surface Elev, ft	1.919	2.169	2.408	2.592	2.549	2.628	2.612	2.215	1.975	9.574		Vavg (fps) =	2.71	D 111 (
			Soil Gain, ft	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.010	navg =	0.019	Bed Max Shear Stress (psf)	Water Depth (ft)
	Soil Gain, tt Clopper Soil Loss, ft			-0.003	-0.003	0.000	-0.138	-0.072	-0.164	-0.151	0.000	-0.010	-0.280	-0.840	Flow (cfs) =	0.34	0.19	0.06
	Avg Bottom Gain, ft 0.00 Avg Clopper Soil Loss, ft -0.06																	
Soil Gain, in			0.018	0.015	0.002	0.008	0.011	0.017	0.015	0.002	0.002	Vol	ume	Avg	Bottom G	ain per Xsection, ft =	0.001	
Clopper Soil Lo			opper Soil Loss, in	-0.001	-0.008	-0.007	-0.032	-0.024	-0.027	-0.026	-0.002	-0.002	[ft ³]	[in]	Avg Clop	oper Soil Lo	oss per Xsection, ft =	-0.060
		Origin	al Surface Elev	230.733	1 thru 6·	X-Se	ection Spa	acing, ft =	5	Origir	nal Surfac	e Elev	89.039	1	7 thru 9:	X-	Section Spacing, ft =	5
Trap	pezoidal Analy	/sis Erode	d Surface Elev	230.270	<i>.</i>	Test S	Section Le	ength, ft =	40	Erode	ed Surfac	e Elev	92.004			Tes	t Section Length, ft =	40
			Soil Gain	3.649	0.274	hongel	yauge spa	acing, ft =	0.5		Soil Gair	1	0.094	0.007		oh '	gauge spacing, tt =	0.5
1		1	CSU	-3.185	-0.239	mannel w	iutri meas	surea, It =	14		CSU		-3.059	-0 229	1	cnannel	width measured, ft =	4

0.5 cfs Flow (Retest)

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

End-of-test and Post-test condition.

	ASTM D7208		Date:	7/3/12	_					Start Time:					4:30 PM End Time: 5:00 PM			
	A31M D7200		Soil:	Sandy Cl	ay						Target F	low (cfs):			0.50	Slope:	5%	-
60 ft k	ong flume 40 ft f	est section	SRD:	Straw Ba	les		Inst	tallation:	Wooden	Stakes /	NRCS Ins	stall						
	2 ft	wide flume										TEST	ATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								1.50						0.00	
eir widti	n (tt) = <u>2</u>	W	Elow Boto of	0.00							0.00	0.00					0.00	
0.0			Cross-section 1	0.00 A	в	с	D	F	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	1.880	2.149	2.352	2.382	2.379	2.359	2.326	2.139	1.854	8.994			3		2.3
	*	To eroded	d Surface Elev, ft	1.880	2.149	2.392	2.402	2.385	2.362	2.343	2.139	1.854	9.030		Vavg (fps) =	3.00	5 114 01	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	-0.039	-0.020	-0.007	-0.003	-0.016	0.000	0.000	-0.036	-0.108	Flow (cfs) =	0.50	0.26	0.08
5 ft				F	Avg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.01		2					
			Cross-section 2	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	2.123	2.343	2.595	2.612	2.631	2.618	2.608	2.359	2.149	9.944			3.1		2.6
		l o erodeo	Surface Elev, ft	2.123	2.365	2.602	2.621	2.644	2.625	2.615	2.382	2.149	0.000	0.000	Vavg (tps) =	3.10	Bed Max Shear	Mater Death (4)
		Clo	Soil Gain, it	0.000	-0.023	-0.007	-0.010	-0.013	-0.007	-0.007	-0.023	0.000	-0.050	-0.151	Flow (cfs) -	0.020	0.26	
10 ft		010	pper 00ii 2033, it	0.000 A	Avg Bottor	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.01	0.000			1100 (013) =	0.00	0.20	0.00
			Cross-section 3	А	в	с	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.946	2.215	2.398	2.428	2.454	2.448	2.431	2.208	1.942	9.274			1.61		2.0
		To eroded	d Surface Elev, ft	1.969	2.247	2.375	2.402	2.425	2.461	2.484	2.208	1.965	9.295		Vavg (fps) =	1.61	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.023	0.026	0.030	0.000	0.000	0.000	0.000	0.035	0.105	navg =	0.120	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	-0.023	-0.033	0.000	0.000	0.000	-0.013	-0.052	0.000	-0.023	-0.056	-0.167	Flow (cfs) =	0.50	1.38	0.44
15 ft		—		A	Avg Bottor	n Gain, ft	0.01	Avg C	lopper Sc	il Loss, ft	-0.02		[ft ²]	(in)	Veaad	V @ 0.04	V @ 0.04	To Mater Out 4
		To origina	Surface Flow ft	A 1 099	2 229	2 454	2 500	2 5 2 0	F 2.512	2 407	2 270	2 027	9.508		v @ 0.2d	0.79	v @ 0.8d	1 0 water Surr, rt
		To erodeo	d Surface Elev. ft	2.073	2.352	2.398	2.470	2.431	2.402	2.461	2.349	2.060	9.501		Vavg (fps) =	0.78		1.9
			Soil Gain, ft	0.000	0.000	0.056	0.030	0.089	0.112	0.036	0.000	0.000	0.154	0.463	navg =	0.280	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	-0.085	-0.115	0.000	0.000	0.000	0.000	0.000	-0.079	-0.023	-0.147	-0.441	Flow (cfs) =	0.50	1.66	0.53
20 ft				A	Avg Bottor	m Gain, ft	0.04	Avg C	lopper Sc	il Loss, ft	-0.03							
			Cross-section 5	А	В	с	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.683	1.919	2.152	2.198	2.228	2.228	2.215	1.975	1.775	8.321			0.16		1.3
		To eroded	d Surface Elev, ft	1.686	1.923	2.103	2.156	2.195	2.172	2.077	1.939	1.798	0.163	0.489	Vavg (fps) =	0.16	Bed Max Shear	
		01-	Soil Gain, ft	0.000	0.000	0.049	0.043	0.033	0.056	0.138	0.036	0.000	-0.007	-0.020	navg =	1.858	Stress (psf)	Water Depth (ft)
25 ft		CIU	pper Soir Loss, rt	-0.003 A	va Bottor	n Gain. ft	0.000	Ava C	lopper Sc	il Loss. ft	0.000	-0.023			FIOW (CIS) =	0.50	2.04	0.65
			Cross-section 6	A	в	с	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.785	2.054	2.306	2.336	2.369	2.339	2.280	2.093	1.844	8.805			0		1.3
		To eroded	d Surface Elev, ft	1.834	2.047	2.241	2.254	2.267	2.241	2.215	2.054	1.847	8.585		Vavg (fps) =	0.00	Bed Max Shear	
			Soil Gain, ft	0.000	0.007	0.066	0.082	0.102	0.098	0.066	0.039	0.000	0.229	0.686	navg =	#DIV/0!	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	-0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.003	-0.009	-0.026	Flow (cfs) =	#DIV/0!	2.98	0.95
30 ft		—		, A	Avg Bottor	n Gain, ft	0.05	Avg C	lopper Sc	il Loss, ft	-0.01		[ft ²]	(in)				T. 111
		To origina	I Surface Elev. ft	A 1 608	1 860	2 083	2 159	2 208	2 205	2 159	1 975	1 742	8.174		V @ 0.2d	2 4	V @ 0.8d	2 1
		To eroded	d Surface Elev. ft	1.608	1.864	2.126	2.205	2.247	2.238	2.208	1.975	1.742	8.273		Vavg (fps) =	2.40		2.1
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.040	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	-0.003	-0.043	-0.046	-0.039	-0.033	-0.049	0.000	0.000	-0.098	-0.295	Flow (cfs) =	0.74	0.48	0.15
35 ft				Æ	Avg Bottor	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
			Cross-section 8	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.939	2.215	2.408	2.467	2.487	2.470	2.421	2.159	1.932	9.291			2.9		2.4
		To erodeo	Surface Elev, ft	1.939	2.215	2.464	2.530	2.539	2.497	2.421	2.159	1.932	0.000	0.000	Vavg (fps) =	2.90	Bed Max Shear	Mator Dopth (ft)
		Clo	Soil Gain, it	0.000	0.000	-0.056	-0.062	-0.052	-0.026	0.000	0.000	0.000	-0.095	-0.285	Flow (cfs) =	0.030	0.41	0 13
40 ft		0.0	ppor 000 2000, rt	0.000 A	Avg Bottor	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02	0.000			11011 (010) =	0.10	0.11	0.10
			Cross-section 9	А	в	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.854	2.087	2.316	2.346	2.339	2.316	2.270	2.018	1.775	8.758			2.8		2.3
		To eroded	d Surface Elev, ft	1.854	2.087	2.333	2.398	2.395	2.346	2.287	2.018	1.775	8.842		Vavg (fps) =	2.80	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	Stress (psf)	Water Depth (ft)
Clopper Soil Loss,			pper Soil Loss, ft	0.000	0.000	-0.016	-0.052	-0.056	-0.030	-0.016	0.000	0.000	-0.084	-0.253	Flow (cfs) =	0.55	0.31	0.10
					avg Bottor	n Gain, ft	0.00	Avg C	opper Sc	LOSS, ft	-0.02	0.000	Vol	ume	۸.	Rottors C	ain por Yaanti #	0.000
Clopper Soil Loss, in -0.006 -0.010 -0.007 -0.008 -0.007 -0.004 -0.005 -0						0.010 0.002 0.000 Volur -0.005 -0.006 -0.004 F# ³ 1			[in]	Avg Bottom Gain per Xsection, tt = 0.000 Avg Clopper Soil Loss per Xsection. ft = -0.019								
		Origina	I Surface Elev	229.738	1 thru	X-Se	ection Spa	acing, ft =	5	Origin	nal Surfac	e Elev	88.786	·1	7 thru 9:	X-	Section Spacing, ft =	5
Tro	nezoidal Analveis	Eroded	Surface Elev	228.817	6:	Test S	Section Le	ength, ft =	40	Erode	ed Surfac	e Elev	89.719			Tes	t Section Length, ft =	40
114	0.000, a laryolo	s	oil Gain	2.332	0.175	9	gauge spa	acing, ft =	0.5		Soil Gair		0.000	0.000			gauge spacing, ft =	0.5
			CSLI	-1.411	-0.106	hannel w	idth meas	ured, ft =	4		CSLI		-0.932	-0.070		channel	width measured, ft =	4

0.5 cfs Flow (Enhanced NRCS Installation)

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding Starting

Increased Ponding and Overtopping. No Apparent Underflow

End-of-test and Post-test With Upstream Sediment Deposition and Modest Downstream Scour

Project: ASTM D 7208: Standard Test Method for Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

	Client:	GSWCC			Product:	Straw Bales		Wooden Stakes / NRCS Install			
_	Flow:	0.5 cfs for 3	30 minutes		Test Date:	7/3/2012					
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf		
	0	0.00	-0.11	0.00	-0.036	0.98	5.92	3.00	0.26		
	5	0.00	-0.12	0.00	-0.050	0.98	11.83	3.10	0.26		
	10	0.10	-0.19	0.03	-0.056	5.31	19.90	1.61	1.38		
	15	0.43	-0.40	0.15	-0.147	6.38	21.88	0.78	1.66		
14" High	20	0.47	-0.04	0.16	-0.007	10.16	28.93	0.16	2.64		
Check	25	0.61	-0.07	0.23	-0.009	11.46	31.35	0.00	2.98		
Location	30	0.00	-0.28	0.00	-0.098	1.85	13.45	2.40	0.48		
	35	0.00	-0.26	0.00	-0.095	1.57	12.93	2.90	0.41		
	40	0.00	-0.23	0.00	-0.084	1.18	6.10	2.80	0.31		
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index		
				2.33	-2.34		152.30	1.53	-1.54		

	Flow:	1.0 cfs for 3	30 minutes		Test Date:	7/5/2012			
	Station ft	Soil Gain,	Soil Loss,	Soil Gain, ft ²	Soil Loss,	Flow Depth in	Wetted Area ft ²	Flow Velocity,	Shear nef
		0.00	-0.27	0.00	-0.102	1 73	6 61	3.83	0.45
	5	0.00	-0.27	0.00	-0.072	2.52	14.70	3.14	0.65
	10	0.00	-0.28	0.00	-0.090	6.46	22.03	2.04	1.68
	15	0.43	-0.39	0.14	-0.133	8.27	25.41	1.81	2.15
14" High	20	0.63	-0.07	0.24	-0.008	12.44	33.18	0.51	3.23
Check	25	1.08	-0.02	0.40	-0.008	13.62	35.38	0.10	3.54
Location	30	0.00	-0.24	0.00	-0.080	2.83	15.28	3.36	0.74
	35	0.00	-0.21	0.00	-0.067	1.89	13.52	3.71	0.49
	40	0.00	-0.24	0.00	-0.087	1.42	6.32	4.04	0.37
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index
				2 93	-2 54		172 44	1 70	-1 47

	Flow:	2.0 cfs for 3	0 minutes		Test Date:	7/16/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.39	0.00	-0.147	2.01	6.87	5.10	0.52
	5	0.00	-0.41	0.00	-0.160	6.85	22.76	3.63	1.78
	10	0.03	-0.22	0.01	-0.082	9.13	27.02	1.46	2.37
	15	0.20	-0.34	0.09	-0.121	11.02	30.54	0.34	2.86
14" High	20	0.74	-0.47	0.32	-0.188	12.13	32.60	0.33	3.15
Check	25	0.77	-0.21	0.31	-0.062	14.49	37.00	0.25	3.77
Location	30	0.00	-0.45	0.00	-0.163	4.72	18.80	3.66	1.23
	35	0.00	-0.51	0.00	-0.197	2.05	13.81	4.54	0.53
	40	0.00	-0.49	0.00	-0.183	2.20	7.05	6.26	0.57
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				2.91	-5.13		196.46	1.48	-2.61

CJS 7/19/2012 (Rev. 8/21/14)

Quality Review / Date

Project: ASTM D 7208: Standard Test Method for Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Flow: 2.0 cfs for 30 minutes

Test Date: 7/16/2012

ACT84 D7209				Date:	7/3/12							S	tart Time:			4:30 PM	End Time:	5:00 PM	
	ASTM	D7208		Soil:	Sandy C	lay						Target F	low (cfs):			0.50	Slope:	5%	
60 ft lo	ong flume	40 ft 1	est section	SRD:	Straw Ba	ales		Ins	tallation:	Wooden	Stakes /	NRCS Ins	stall						
		2 ft	wide flume										TEST	DATA					
	1 2	3		Outlet Weir								Weir						Channel Targets	
	FLO\	N		Water Depth, in								1.50						0.00	
eir widtl	h (ft) = 2		W	ater Velocity, ft/s								0.00						0.00	
0 ft	CDE	FG H		Flow Rate, cfs	0.00							0.00	0.00					0.00	
				Cross-section 1	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
				Surface Elev, ft	1.880	2.149	2.352	2.382	2.379	2.359	2.326	2.139	1.854	8.994			3		2.3
	•		To eroded	d Surface Elev, ft	1.880	2.149	2.392	2.402	2.385	2.362	2.343	2.139	1.854	9.030		Vavg (fps) =	3.00	Bed Max Shear	Water Depth (ft)
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (pst)	
			Clo	pper Soil Loss, ft	0.000	0.000	-0.039	-0.020	-0.007	-0.003	-0.016	0.000	0.000	-0.036	-0.108	Flow (cfs) =	0.50	0.26	0.08
5 ft					A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper So	oil Loss, ft	-0.01							
				Cross-section 2	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	2.123	2.343	2.595	2.612	2.631	2.618	2.608	2.359	2.149	9.944			3.1		2.6
			To eroded	d Surface Elev, ft	2.123	2.365	2.602	2.621	2.644	2.625	2.615	2.382	2.149	9.995		Vavg (fps) =	3.10	Bed Max Shear Stress (osf)	Water Depth (ft)
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	011035 (p31)	
			Clo	pper Soil Loss, ft	0.000	-0.023	-0.007	-0.010	-0.013	-0.007	-0.007	-0.023	0.000	-0.050	-0.151	Flow (cfs) =	0.50	0.26	0.08
10 ft			— —		P	Avg Bottor	n Gain, ft	0.00	Avg C	lopper So	DII LOSS, IT	-0.01			1 • • •	Venni	Vecd	Veod	To Water Cout 4
			To ori-i-	Cross-section 3	A 1.040	2.045	2 200	2 400	2 454	F	2 404	2 200	1.042	[ft*]	[in]	v @ 0.20	v & U.6d	v @ U.80	o water Surr, ft
			To eroda	Surface Elev. ft	1.940	2.215	2.398	2.420	2.454	2.448	2.431	2.208	1.942	9.274		Vava (foc)	1.01		2.0
			10 eloued	Soil Gain #	0.000	0.000	0.022	0.026	0.030	0.000	0.000	0.000	0.000	0.035	0.105	navg (ips) =	0.120	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	nner Soil Loss ft	-0.023	-0.033	0.020	0.020	0.000	-0.013	-0.052	0.000	-0.023	-0.056	-0.167	Flow (cfs) =	0.120	1.38	0.44
15 ft			010	ppci 00ii 2033, it	0.020	Ava Bottor	n Gain ft	0.01	Ava C	Clopper Sc	nilloss ft	-0.02	0.020	0.000	0.107	1100 (013) =	0.00	1.00	0.44
10 11			·	Cross-section 4	A	B	C	D.01	F	F	G G	H	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
			To origina	I Surface Elev. ft	1.988	2.238	2.454	2.500	2.520	2.513	2.497	2.270	2.037	9.508	1		0.78		1.9
			To eroded	d Surface Elev, ft	2.073	2.352	2.398	2.470	2.431	2.402	2.461	2.349	2.060	9.501		Vavg (fps) =	0.78	Rod Max Shoar	
				Soil Gain, ft	0.000	0.000	0.056	0.030	0.089	0.112	0.036	0.000	0.000	0.154	0.463	navg =	0.280	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	-0.085	-0.115	0.000	0.000	0.000	0.000	0.000	-0.079	-0.023	-0.147	-0.441	Flow (cfs) =	0.50	1.66	0.53
20 ft					A	Avg Bottor	n Gain, ft	0.04	Avg C	l Clopper So	il Loss, ft	-0.03				. ,			
				Cross-section 5	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.683	1.919	2.152	2.198	2.228	2.228	2.215	1.975	1.775	8.321			0.16		1.3
			To eroded	d Surface Elev, ft	1.686	1.923	2.103	2.156	2.195	2.172	2.077	1.939	1.798	8.165	İ	Vavg (fps) =	0.16	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.049	0.043	0.033	0.056	0.138	0.036	0.000	0.163	0.489	navg =	1.858	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	-0.003	-0.003	0.000	0.000	0.000	0.000	0.000	0.000	-0.023	-0.007	-0.020	Flow (cfs) =	0.50	2.64	0.85
25 ft					A	Avg Bottor	m Gain, ft	0.04	Avg C	Clopper So	oil Loss, ft	0.00							
				Cross-section 6	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.785	2.054	2.306	2.336	2.369	2.339	2.280	2.093	1.844	8.805			0.001		1.3
			To eroded	d Surface Elev, ft	1.834	2.047	2.241	2.254	2.267	2.241	2.215	2.054	1.847	8.585		Vavg (fps) =	0.00	Bed Max Shear	Water Depth (ft)
				Soil Gain, ft	0.000	0.007	0.066	0.082	0.102	0.098	0.066	0.039	0.000	0.229	0.686	navg =	322.173	Stress (psf)	
			Clo	pper Soil Loss, ft	-0.049	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.003	-0.009	-0.026	Flow (cfs) =	0.00	2.98	0.95
30 ft					A	Avg Bottor	m Gain, ft	0.05	Avg C	Clopper So	oil Loss, ft	-0.01							
				Cross-section 7	A	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.608	1.860	2.083	2.159	2.208	2.205	2.159	1.975	1.742	8.174			2.4		2.1
			To eroded	d Surface Elev, ft	1.608	1.864	2.126	2.205	2.247	2.238	2.208	1.975	1.742	8.273		Vavg (fps) =	2.40	Bed Max Shear	Water Depth (ft)
			~	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.040	0.1000 (poi)	0.15
or /:			Clo	pper Soil Loss, ft	0.000	-0.003	-0.043	-0.046	-0.039	-0.033	-0.049	0.000	0.000	-0.098	-0.295	Flow (cts) =	0.74	0.48	0.15
35 ft					A	vg Bottor	n Gain, ft	0.00	Avg C	nopper So	л LOSS, ft	-0.02		11.22	[:]	Vecor	Vecci	Venni	To Wotor Cost /
			To origin -	Surface Flow 4	A 1 020	2 215	2 409	2 167	2 497	2 /70	2 4 2 4	2 150	1 022	[ft ⁻]	լոյ	v 🙂 0.2d	v w U.00	v @ U.80	2 / 2 /
			To erodo	Surface Elev, It	1 030	2.210	2.400	2.407	2.407	2.4/0	2.421	2.109	1 932	9,386		Vava (fpe) -	2.9		2.4
			10 CIUUR	Soil Gain 4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	neva -	0.020	Bed Max Shear Stress (psf)	Water Depth (ft)
			Ch	DDer Soil Loss #	0.000	0.000	-0.056	-0.062	-0.052	-0.026	0.000	0.000	0.000	-0.095	-0.285	Flow (cfs) -	0.030	0.41	0.13
40 ft			00		0.000	Ava Bottor	n Gain, ft	0.002	Ava	Clopper Sc	pil Loss. ft	-0.02	0.000	0.000	0.200	(013) =	0.70	0.71	0.10
				Cross-section 9	A	B	C	D	E	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
			To origina	I Surface Elev. ft	1.854	2.087	2.316	2.346	2.339	2.316	2.270	2.018	1.775	8,758			2.8		2.3
			To eroded	d Surface Elev, ft	1.854	2.087	2.333	2.398	2.395	2.346	2.287	2.018	1.775	8.842		Vavg (fps) =	2.80	Red Max Shoor	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.016	-0.052	-0.056	-0.030	-0.016	0.000	0.000	-0.084	-0.253	Flow (cfs) =	0.55	0.31	0.10
					A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper So	oil Loss, ft	-0.02							
				Avg Soil Gain, ft	0.000	0.000	0.018	0.014	0.022	0.024	0.025	0.005	0.000	Vol	ume	Avç	Bottom Ga	ain per Xsection, ft =	0.000
L			Avg Clo	pper Soil Loss, ft	-0.016	-0.025	-0.017	-0.021	-0.018	-0.011	-0.013	-0.015	-0.010	[ft ³]	[in]	Avg Clo	oper Soil Lo	ss per Xsection, ft =	-0.009
			Original	I Surface Elev	229.738	1 thru	X-S	ection Spa	acing, ft =	5	Origir	nal Surfac	e Elev	88.786		7 thru 9:	X-	Section Spacing, ft =	5
Tro	nezoidal An	alvsis	Eroded	Surface Elev	228.817	6:	Test	Section Le	ength, ft =	40	Erod	ed Surfac	e Elev	89.719			Tes	t Section Length, ft =	40
	pozoidai Ali	ayaa	S	oil Gain	2.332	0.175		gauge spa	acing, ft =	0.5		Soil Gain	1	0.000	0.000			gauge spacing, ft =	0.5
			_	CSLI	-1.411	-0.106	hannel w	idth meas	sured, ft =	4		CSLI		-0.932	-0.070		channel	width measured, ft =	4

0.5 cfs Flow (Enhanced Installation)

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding Starting

Increased Ponding and Overtopping. No Apparent Underflow

End-of-test and Post-test With Upstream Sediment Deposition and Modest Downstream Scour
	ASTM D7209		Date:	7/5/12							S	tart Time:			2:07 PM	End Time:	2:37 PM	
	A31M D7208		Soil:	Sandy Cla	ay						Target F	low (cfs):			0.50	Slope:	5%	-
60 ft lo	ong flume 40 ft tes	st section	SRD:	Straw Ba	les		Ins	tallation:	Wooden	Stakes / I	NRCS Ins	stall						
	2 ft wi	ide flume										TEST D	DATA					
	1 2 3	_	Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								2.25						1.50	
Veir width	h(tt) = 2	Wa	ater Velocity, ft/s								0.00	0.00					4.00	
0 π	CDEFGH		Flow Rate, crs	0.00		<u> </u>	D		E	0	0.00	0.00	10.21	[:-1	V@0.2d	V@064	00.0	To Wotor Surf. ft
			Surface Elov ft	1 964	2.002	2 246	2 202	2 /19	2 270	2 252	2 152	1 002	[π]	liul	v @ 0.2u	2 92	v @ 0.80	2.2
	. ↓ j.	To eroded	Surface Elev, ft	1.864	2.035	2.340	2.332	2.410	2.373	2.332	2.132	1.896	9 109		Vava (fps) =	3.83	5 11 0	2.5
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	Stress (psf)	Water Depth (ft)
		Clop	per Soil Loss, ft	0.000	-0.013	-0.049	-0.036	-0.007	-0.026	-0.020	-0.036	-0.013	-0.102	-0.305	Flow (cfs) =	0.50	0.45	0.14
5 ft				A	Avg Bottor	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
		c	cross-section 2	A	В	С	D	E	F	G	н	Т	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	2.110	2.372	2.579	2.605	2.621	2.605	2.598	2.313	2.080	9.894			3.14		2.4
		To eroded	Surface Elev, ft	2.192	2.379	2.598	2.644	2.621	2.621	2.615	2.320	2.083	9.967		Vavg (fps) =	3.14	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.037	Stress (psf)	water Deptri (it)
		Clop	per Soil Loss, ft	-0.082	-0.007	-0.020	-0.039	0.000	-0.016	-0.016	-0.007	-0.003	-0.072	-0.217	Flow (cfs) =	0.50	0.65	0.21
10 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
		C	cross-section 3	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	-	To original	Surface Elev, ft	1.834	2.083	2.310	2.323	2.343	2.336	2.303	2.057	1.804	8.791			2.04		1.8
		To eroded	Surface Elev, ft	1.867	2.106	2.320	2.329	2.343	2.349	2.352	2.106	1.827	8.881		Vavg (fps) =	2.04	Bed Max Shear Stress (psf)	Water Depth (ft)
		0	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.108	01033 (p3)	0.54
		Clop	per Soil Loss, ft	-0.033	-0.023	-0.010	-0.007	0.000	-0.013	-0.049	-0.049	-0.023	-0.090	-0.271	Flow (cfs) =	0.50	1.68	0.54
15 ft			ross-section 4	A	vg Bottor	r Gain, ft	0.00	AVg C	opper Sc	G LOSS, ft	-0.02	1	[f+ ²]	[in]	V@02d	V@ned	V @ 0 Pd	To Water Surf 4
		To original	Surface Elev. ft	1 001	2 218	2 451	2 4 9 3	2 500	2 / 03	2 484	2 228	1 982	0.420	[m]	v @ 0.20	1 81	V @ 0.00	1 8
		To eroded	Surface Elev. ft	2.054	2.280	2.359	2.434	2.461	2.451	2.392	2.333	2.047	9.419		Vavg (fps) =	1.81	Ded May Ohner	1.0
			Soil Gain. ft	0.000	0.000	0.092	0.059	0.039	0.043	0.092	0.000	0.000	0.142	0.427	navg =	0.143	Stress (psf)	Water Depth (ft)
		Clop	per Soil Loss, ft	-0.062	-0.062	0.000	0.000	0.000	0.000	0.000	-0.105	-0.066	-0.133	-0.399	Flow (cfs) =	0.50	2.15	0.69
20 ft				A	Avg Bottor	m Gain, ft	0.04	Avg C	lopper Sc	il Loss, ft	-0.03				. ()			
		c	cross-section 5	A	В	С	D	E	F	G	н	Т	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.844	1.991	2.208	2.238	2.274	2.257	2.241	2.011	1.772	8.508			0.51		1.1
		To eroded	Surface Elev, ft	1.844	1.962	2.156	2.165	2.185	2.156	2.159	1.962	1.821	8.274		Vavg (fps) =	0.51	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.030	0.052	0.072	0.089	0.102	0.082	0.049	0.000	0.243	0.728	navg =	0.667	Stress (psf)	vvater Deptri (rt)
		Clop	per Soil Loss, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.049	-0.008	-0.025	Flow (cfs) =	0.50	3.23	1.04
25 ft				A	Avg Bottor	m Gain, ft	0.05	Avg C	lopper Sc	il Loss, ft	-0.01							
		C	cross-section 6	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	-	To original	Surface Elev, ft	1.831	2.070	2.297	2.356	2.382	2.359	2.326	2.110	1.877	8.882			0.1		1.1
		To eroded	Surface Elev, ft	1.837	2.080	2.192	2.208	2.224	2.218	2.169	2.008	1.877	8.490		Vavg (fps) =	0.10	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.105	0.148	0.157	0.141	0.157	0.102	0.000	0.400	1.201	navg =	3.616	Siless (psi)	
00.4		Clop	per Soil Loss, ft	-0.007	-0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.008	-0.023	Flow (cfs) =	0.23	3.54	1.14
30 ft			ross-soction 7	P		n Gain, rt	0.09	Avg C	iopper Sc	α Loss, π	0.00		[# ²]	[in]	V @ 0.2d	V @ 0.64	V @ 0.84	To Water Surf. ft
		To original	Surface Elev. ft	1.644	1.913	2.142	2.195	2.208	2,195	2.172	1.975	1,739	8.256	[]	V & 0.20	3.36	V & 0.00	2.0
		To eroded	Surface Elev. ft	1.644	1.913	2.165	2.221	2.238	2.231	2.234	1.975	1.739	8.336		Vavg (fps) =	3.36	Rod Max Shoar	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.038	Stress (psf)	Water Depth (ft)
		Clop	per Soil Loss, ft	0.000	0.000	-0.023	-0.026	-0.030	-0.036	-0.062	0.000	0.000	-0.080	-0.240	Flow (cfs) =	1.59	0.74	0.24
35 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
		c	cross-section 8	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.909	2.201	2.428	2.457	2.464	2.448	2.425	2.175	1.923	9.265			3.71		2.4
		To eroded	Surface Elev, ft	1.909	2.201	2.444	2.477	2.536	2.470	2.451	2.175	1.923	9.332	·	Vavg (fps) =	3.71	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.026	Stress (psf)	Water Deptr (it)
		Clop	per Soil Loss, ft	0.000	0.000	-0.016	-0.020	-0.072	-0.023	-0.026	0.000	0.000	-0.067	-0.200	Flow (cfs) =	1.17	0.49	0.16
40 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
		C	Cross-section 9	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	-	To original	Surface Elev, ft	1.844	2.057	2.297	2.382	2.375	2.365	2.329	2.073	1.844	8.867			4.04		2.3
		10 eroded	Surface Elev, ft	1.844	2.057	2.326	2.421	2.415	2.405	2.365	2.073	1.844	8.955	0.077	vavg (fps) =	4.04	Bed Max Shear Stress (psf)	Water Depth (ft)
	Soil Gain, t Clopper Soil Loss			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	0.07	0.40
	Clopper Soil Loss, rt			0.000	0.000	-0.030	-0.039	-0.039	-0.039	-0.036	0.000	0.000	-0.087	-0.262	FIOW (CTS) =	0.95	0.37	0.12
Avg Soil Gain, ft 0.000			0 004	0 021	0.00	0.018	0 021	0.025	0.007	0.000	Vol	ume	Δνα	Bottom Gr	ain per Xsection ft -	0.000		
Avg Soil Gain, ft Avg Clopper Soil Loss, ft				-0.025	-0.015	-0.018	-0.020	-0.017	-0.017	-0.025	-0.028	-0.022	[ft ³]	[in]	Avg Avg Clor	per Soil Lo	ss per Xsection ft -	-0.020
Original Surface Elev				227.835	1 46	X-S4	ection Sna	acing. ft =	5	Oriain	al Surfac	e Elev	89.134	£1	7 thru 9	, 00" LU X-	Section Spacing. ft =	5
Eroded Surface Elev 226.701 6: Test Se				Section Le	ength, ft =	40	Erode	ed Surface	e Elev	89.885			Tes	t Section Length, ft =	40			
Trap	ezoidal Analysis	So	oil Gain	2.925	0.219	9	gauge spa	acing, ft =	0.5	-	Soil Gain	1	0.000	0.000			gauge spacing, ft =	0.5
	F		CSLI	-1.791	-0.134	hannel w	dth meas	ured, ft =	4		CSLI		-0.752	-0.056		channel	width measured, ft =	4
	Į																	

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding & Overtopping

End-of-test and Post-test

	ACTM D7209	Date:	7/16/12							SI	art Time:			4:49 PM	End Time:	5:19 PM	
	ASTM D7208	Soil:	Sandy C	lay						Target F	low (cfs):			2.00	Slope:	5%	-
60 ft I	ong flume 40 ft test section	SRD:	Straw Ba	ales		Inst	allation:	Wooden	Stakes /	NRCS Ins	tall						
	2 ft wide flume										TEST	DATA					
	1 2 3	Outlet Weir								Weir						Channel Targets	
	FLOW	Water Depth, in								1.50						0.00	
eir widt	th (ft) = 2 V	/ater Velocity, ft/s								0.00						0.00	
0 ft	CDEFGH	Flow Rate, cfs	0.00				-	-	-	0.00	0.00					0.00	
	!	Cross-section 1	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		I Surface Elev, ft	1.037	1.460	1.932	2.379	2.405	2.343	1.873	1.375	0.889	7.428			5.1		2.3
	 To erode 	d Surface Elev, ft	1.037	1.460	1.962	2.451	2.477	2.415	1.916	1.378	0.889	7.575		Vavg (fps) =	5.10	Bed Max Shear	Water Depth (ft)
		Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	Stress (psi)	
	Cl	opper Soil Loss, ft	0.000	0.000	-0.030	-0.072	-0.072	-0.072	-0.043	-0.003	0.000	-0.147	-0.440	Flow (cts) =	2.00	0.52	0.17
5 ft		a <i>i</i> a	P A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	I Loss, ft	-0.03	re-21	P . 1			VOAL	T. 111
	To order	Cross-section 2	A	B 4 500	0.440	0.500	E	F	G	H	1	[ft ⁻]	lini	V @ 0.2d	V @ 0.6d	V @ 0.8d	10 Water Surf, ft
	To origin		1.076	1.522	2.110	2.362	2.034	2.015	2.149	1.000	1.155	0.202			3.03		2.1
	10 81008	Soil Gain ft	0.000	0.000	2.159	2.034	2.717	2.717	2.175	0.000	0.000	0.442	0.000	vavg (ips) =	0.062	Bed Max Shear Stress (psf)	Water Depth (ft)
	Ch	onner Soil Loss ft	0.000	0.000	-0.043	-0.072	-0.062	-0.102	-0.026	0.000	0.000	-0.160	-0.479	Flow (cfs) -	2.00	1 78	0.57
10 ft		5ppci 00ii 2033, it	0.000	Ava Bottor	n Gain ft	0.00	0.002	Ava C	lonner Sc	illoss ft	-0.03	0.100	0.475	1 101 (013) =	2.00	1.70	0.01
		Cross-section 3	A	В	С	D	F	F	G	н	1	[ft ²]	finl	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
	To origin	al Surface Elev, ft	0.889	1.322	1.864	2.316	2.369	2.336	1.880	1.401	0.928	7.257			1.46		1.6
	To erode	d Surface Elev, ft	0.889	1.342	1.883	2.297	2.392	2.395	1.926	1.401	0.928	7.326		Vavg (fps) =	1.46	Bed May Shear	
		Soil Gain, ft	0.000	0.000	0.000	0.020	0.000	0.000	0.000	0.000	0.000	0.013	0.039	navg =	0.190	Stress (psf)	Water Depth (ft)
	Cl	opper Soil Loss, ft	0.000	-0.020	-0.020	0.000	-0.023	-0.059	-0.046	0.000	0.000	-0.082	-0.246	Flow (cfs) =	2.22	2.37	0.76
15 ft			A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.02						
		Cross-section 4	Α	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	To origin	al Surface Elev, ft	1.033	1.506	2.018	2.480	2.536	2.464	1.975	1.486	1.001	7.806			0.34		1.6
	To erode	d Surface Elev, ft	1.033	1.480	2.001	2.375	2.543	2.575	2.110	1.486	1.001	7.835		Vavg (fps) =	0.34	Bed Max Shear	Water Death (4)
		Soil Gain, ft	0.000	0.026	0.016	0.105	0.000	0.000	0.000	0.000	0.000	0.093	0.279	navg =	0.924	Stress (psf)	water Depth (It)
	Cl	opper Soil Loss, ft	0.000	0.000	0.000	0.000	-0.007	-0.112	-0.135	0.000	0.000	-0.121	-0.364	Flow (cfs) =	0.62	2.86	0.92
20 ft			A	Avg Bottor	m Gain, ft	0.02		Avg C	lopper Sc	il Loss, ft	-0.03						
		Cross-section 5	A	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	To origin	al Surface Elev, ft	0.689	1.132	1.614	2.106	2.119	2.080	1.594	1.125	0.640	6.293			0.33		1.0
	To erode	d Surface Elev, ft	0.689	1.194	1.585	1.896	2.001	1.880	1.732	1.276	0.640	6.159		Vavg (fps) =	0.33	Bed Max Shear	Water Depth (ft)
		Soil Gain, ft	0.000	0.000	0.030	0.210	0.118	0.200	0.000	0.000	0.000	0.323	0.968	navg =	1.014	Stress (psr)	
	Cl	opper Soil Loss, ft	0.000	-0.062	0.000	0.000	0.000	0.000	-0.138	-0.151	0.000	-0.188	-0.564	Flow (cfs) =	0.67	3.15	1.01
25 ft			A	Avg Bottor	n Gain, ft	0.06	_	Avg C	lopper Sc	il Loss, ft	-0.04	2					
		Cross-section 6	A	В	C	D	E	F	G	H	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	To origin	al Surface Elev, ft	0.965	1.378	1.962	2.385	2.438	2.352	1.906	1.450	0.988	7.4/1) (0.25		1.1
	10 81008	Soil Gain ft	0.901	0.000	0.095	0.202	0.151	2.300	0.000	0.000	0.994	0.209	0.025	vavg (ips) =	1.507	Bed Max Shear Stress (psf)	Water Depth (ft)
	Ch	Soil Gain, It	-0.016	-0.036	0.000	0.232	0.000	0.002	-0.089	-0.007	-0.007	-0.062	-0.185	Flow (cfs) -	0.60	3.77	1.21
30 ft		5ppci 00ii 2033, it	-0.010 A	Ava Bottor	n Gain ft	0.000	0.000	Ava C	lonner Sc	illoss ft	-0.02	0.002	0.100	1104 (013) =	0.00	5.77	1.21
00 11		Cross-section 7	A	В	C	D.000	F	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
	To origin	al Surface Elev. ft	1.755	2.008	2.152	2.224	2.254	2.228	2.175	1.929	1.654	8.355			3.66		1.9
	To erode	d Surface Elev, ft	1.759	2.008	2.247	2.274	2.320	2.313	2.201	1.946	1.654	8.518		Vavg (fps) =	3.66	Bed Max Shear	
		Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.049	Stress (psf)	Water Depth (ft)
	Cl	opper Soil Loss, ft	-0.003	0.000	-0.095	-0.049	-0.066	-0.085	-0.026	-0.016	0.000	-0.163	-0.490	Flow (cfs) =	2.88	1.23	0.39
35 ft			A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.04						
		Cross-section 8	Α	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	To origin	al Surface Elev, ft	1.867	2.044	2.280	2.320	2.316	2.283	2.224	1.952	1.716	8.603			4.54		2.2
	To erode	d Surface Elev, ft	1.867	2.093	2.346	2.369	2.365	2.385	2.280	1.962	1.716	8.800		Vavg (fps) =	4.54	Bed Max Shear	Water Depth (ft)
		Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.023	Stress (psf)	Water Deptir (it)
	Cl	opper Soil Loss, ft	0.000	-0.049	-0.066	-0.049	-0.049	-0.102	-0.056	-0.010	0.000	-0.197	-0.591	Flow (cfs) =	1.55	0.53	0.17
40 ft			A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.04						
		Cross-section 9	Α	В	С	D	Е	F	G	Н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	To origin	al Surface Elev, ft	1.890	2.136	2.365	2.392	2.379	2.323	2.290	2.057	1.749	8.889			6.26		2.3
	To erode	d Surface Elev, ft	1.890	2.136	2.418	2.448	2.448	2.451	2.349	2.057	1.749	9.072		Vavg (fps) =	6.26	Bed Max Shear	Water Depth (ft)
		Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.017	Griess (psi)	
	Clopper Soil Loss, f		0.000	0.000	-0.052	-0.056	-0.069	-0.128	-0.059	0.000	0.000	-0.183	-0.548	Flow (cfs) =	2.30	0.57	0.18
<u> </u>	Aug Soil Coin f		A 0.000	Avg Bottor	n Gain, ft	0.00	0.07	Avg C	iopper Sc	II Loss, ft	-0.04				- D		0.000
Avg Soil Gain, ft		0.000	0.004	0.007	0.048	0.017	0.029	0.000	0.000	0.000	Volu rx-31	ume fire1	Ave Cl		ain per Xsection, ft =	0.000	
	Avg Clopper Soil Loss, f		185 444	-0.019	-0.030 v e-	-U.U3b	-0.040	-0.082 5	-0.072	-u.u23		[tt"]	[IN]	Avg Clop	ישיי 2011 LC ע	Section Spacing #	- v.v3 2
	Erodo		185 204	1 thru 6:	A-SE	ection I a	nath ft.	40	Erod	a Surface		87 977		7 inru 9:	X- Too	t Section Length ft	40
Tra	pezoidal Analysis	Soil Gain	2,914	0.219	10310		acina ft -	0.5	LIUU	Soil Gain		0.000	0.000		185	gauge spacing ff -	0.5
		CSLI	-3.277	-0.246	hannel wi	dth meas	ured, ft =	4		CSLI		-1.850	-0.139		channel	width measured. ft =	4

TYPICAL TEST PICTURES 2.0 cfs Flow

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding and Overtopping

End-of-test and Post-test condition.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Client: GSWCC	Product: Filtrexx Compost Sock
---------------	--------------------------------

	Flow: 0.5 cts for 30 minutes				Test Date:	5/15/2012			
	-	Soil Gain,	Soil Loss,	Soil Gain,	Soil Loss,			Flow Velocity,	
	Station, ft	in	in.	ft	ft [_]	Flow Depth, in	Wetted Area, ft ²	ft/s	Shear, psf
	0	0.00	-0.08	0.00	-0.038	1.25	6.16	2.80	0.32
	5	0.00	-0.04	0.00	-0.017	1.00	11.86	3.00	0.26
	10	0.00	-0.10	0.00	-0.042	1.25	12.33	2.90	0.32
	15	0.00	-0.04	0.00	-0.017	3.50	16.52	0.23	0.91
9" High	20	0.10	-0.03	0.03	-0.010	4.88	19.08	0.19	1.27
Check	25	0.11	0.00	0.04	0.000	6.00	21.18	0.60	1.56
Location	30	0.00	-0.12	0.00	-0.049	1.38	12.56	1.95	0.36
	35	0.01	-0.17	0.00	-0.066	1.37	12.56	2.50	0.36
	40	0.00	-0.24	0.00	-0.090	1.00	5.93	3.00	0.26
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index
				0.28	-1.21		118.20	0.24	-1.02

	Flow:	1.0 cfs for 3	30 minutes		Test Date:	6/13/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.09	0.00	-0.038	1.50	6.39	3.20	0.39
	5	0.00	-0.11	0.00	-0.039	1.50	12.79	3.40	0.39
	10	0.00	-0.16	0.00	-0.057	1.54	12.86	3.00	0.40
	15	0.00	-0.01	0.00	-0.004	3.66	16.82	0.30	0.95
9" High	20	0.13	-0.03	0.06	-0.008	5.12	19.54	0.21	1.33
Check	25	0.35	-0.03	0.13	-0.015	5.75	20.71	0.61	1.49
Location	30	0.00	-0.19	0.00	-0.068	1.81	13.37	2.59	0.47
	35	0.00	-0.23	0.00	-0.074	1.61	13.01	3.00	0.42
	40	0.00	-0.34	0.00	-0.135	1.54	6.43	3.42	0.40
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
					-1.55		121.93	0.51	-1.27

	Flow:	2.0 cfs for 3	0 minutes		Test Date:	5/22/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.14	0.00	-0.056	2.13	6.98	4.60	0.55
	5	0.00	-0.28	0.00	-0.094	2.00	13.73	4.80	0.52
	10	0.00	-0.14	0.00	-0.042	2.13	13.96	4.50	0.55
	15	0.01	-0.32	0.00	-0.118	4.63	18.62	0.39	1.20
9" High	20	0.43	-0.64	0.18	-0.200	5.25	19.78	0.23	1.36
Check	25	1.29	-0.93	0.51	-0.217	3.25	16.06	0.65	0.84
Location	30	0.00	-0.26	0.00	-0.106	3.12	15.82	3.30	0.81
	35	0.00	-0.18	0.00	-0.069	2.25	14.19	4.40	0.58
	40	0.00	-0.34	0.00	-0.138	2.13	6.98	4.70	0.55
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index
				2.19	-3.90		126.12	1.73	-3.09

CJS 6/30/2012 (Rev. 8/21/14) Quality Review / Date

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Client: GSWCC Product: Filtrexx Compost Sock Flow: 0.5 cfs for 30 minutes Test Date: 5/15/2012 Water & Channel Elevations by Station 5 Original Channel Bottom Eroded Channel Bottom Water Surface Elevation Change from Start of Test Section, ft. 0 -5 -10 -15 -20 -25 5 10 0 30 35 40 ¹⁵ Station Along Test Section, ft. ²⁵

	ASTM D7208	Date:	5/15/12	_						S	tart Time:	11:3	8 AM		End Time:	12:08 PM	_	
	7101111 01200		Soil:	Sandy C	lay		1				Target F	low (cfs):	0.50			Slope:	5%	
60 ft lo	ong flume 40 ft	est section	SRD:	Filtrexx S	Sock		Ins	tallation:	Wooden	Stakes								
	2 ft	wide flume										TEST						
	1 2 3		Outlet Weir								Weir						Channel Targets	
oir widt	FLOW	10/	vvater Depth, in								0.00						0.00	
			Elow Poto ofc	0.00							0.00	0.00					0.00	
0 11		1	Cross-section 1	0.00 A	в	С	D	F	F	G	н	0.00	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	Surface Elev. ft	6.635	6.802	7.010	7.031	7.010	6.969	6.938	6.917	6.792	27,703	1		2.8		6.9
	↓ ↓	To erodeo	Surface Elev, ft	6.635	6.802	7.010	7.052	7.021	7.000	6.938	6.917	6.792	27.741		Vavg (fps) =	2.80	Red May Shoor	0.0
			Soil Gain. ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.026	Stress (psf)	Water Depth (ft)
		Clo	oper Soil Loss, ft	0.000	0.000	0.000	-0.021	-0.010	-0.031	0.000	0.000	0.000	-0.038	-0.115	Flow (cfs) =	0.50	0.32	0.10
5 ft				A	Avg Bottor	n Gain, ft	0.00	Avg C	l Clopper So	oil Loss, ft	-0.01							
			Cross-section 2	A	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	6.719	6.958	7.188	7.344	7.344	7.344	7.271	7.104	6.865	28.698			3		7.3
		To eroded	I Surface Elev, ft	6.719	6.958	7.188	7.354	7.354	7.354	7.271	7.104	6.865	28.715		Vavg (fps) =	3.00	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.010	-0.010	-0.010	0.000	0.000	0.000	-0.017	-0.052	Flow (cfs) =	0.50	0.26	0.08
10 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper So	il Loss, ft	0.00							
			Cross-section 3	А	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	6.979	7.250	7.490	7.583	7.583	7.583	7.563	7.427	7.198	29.804			2.9		7.5
		To eroded	Surface Elev, ft	6.979	7.250	7.490	7.615	7.604	7.604	7.563	7.427	7.198	29.845		Vavg (fps) =	2.90	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	Stress (psf)	water Deptri (it)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.031	-0.021	-0.021	0.000	0.000	0.000	-0.042	-0.125	Flow (cfs) =	0.50	0.32	0.10
15 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper So	oil Loss, ft	-0.01							
			Cross-section 4	A	В	С	D	Е	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	7.208	7.438	7.677	7.771	7.823	7.823	7.781	7.615	7.375	30.622			0.23		7.5
		To eroded	Surface Elev, ft	7.208	7.438	7.677	7.781	7.833	7.833	7.781	7.615	7.375	30.639		Vavg (fps) =	0.23	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.635	Stress (psf)	· · · · · · · · · · · · · · · · · · ·
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.010	-0.010	-0.010	0.000	0.000	0.000	-0.017	-0.052	Flow (cfs) =	0.50	0.91	0.29
20 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper So	oil Loss, ft	0.00							
			Cross-section 5	A	В	С	D	E	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	7.396	7.594	7.844	7.969	8.021	8.021	7.917	7.875	7.646	31.406			0.19		7.6
		To eroded	Surface Elev, ft	7.396	7.594	7.854	7.979	8.000	8.010	7.885	7.865	7.646	31.385		Vavg (fps) =	0.19	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.021	0.010	0.031	0.010	0.000	0.031	0.094	navg =	0.959	Stress (psi)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.010	-0.010	0.000	0.000	0.000	0.000	0.000	-0.010	-0.031	Flow (cfs) =	0.50	1.27	0.41
25 ft				A	Avg Bottor	m Gain, ft	0.01	Avg C	Clopper So	oil Loss, ft	0.00							
			Cross-section 6	A	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	7.594	7.844	8.104	8.219	8.250	8.219	8.198	8.010	7.771	32.273) ((6)	0.6		7.7
		To eroded	Osil Osia 4	7.594	7.844	8.094	8.198	8.229	8.198	8.188	8.010	0.000	32.231	0.405	vavg (rps) =	0.60	Bed Max Shear Stress (psf)	Water Depth (ft)
		Close	Soil Gain, ft	0.000	0.000	0.010	0.021	0.021	0.021	0.010	0.000	0.000	0.042	0.125	navg =	0.349	1.55	0.50
20.4		City	oper Soli Loss, it	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	Flow (crs) =	0.60	1.50	0.50
30 11	-	— ·	Cross-soction 7	^		n Gain, n	0.01	Avg C		G C	0.00		r#+ ² 1	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	Surface Elov ft	7 0/9	D 9 125	9 265	9 470	E 400	F 400	9.459	9 202	1 0.62	22 277	լույ	v @ 0.2u	1 05	v @ 0.80	
		To orodoo	Surface Elev, It	7.040	9.125	9.365	9.510	9.521	9.510	9.460	9 202	0.003	22 425		Vava (fac) -	1.95		0.4
		TO CIOQCO	Soil Gain ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	navg (ips) =	0.040	Stress (psf)	Water Depth (ft)
		Clo	oner Soil Loss ft	0.000	0.000	0.000	-0.031	-0.031	-0.021	-0.010	0.000	0.000	-0.049	-0.146	Flow (cfs) =	0.45	0.36	0.11
35 ft				4	Ava Bottor	n Gain, ft	0.00	Ava C	lopper So	oil Loss, ft	-0.01				()			
			Cross-section 8	A	В	C	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	8.156	8.375	8.615	8.688	8.698	8.688	8.635	8.469	8.177	34.184			2.5		8.6
		To eroded	Surface Elev, ft	8.156	8.375	8.604	8.729	8.729	8.719	8.656	8.469	8.177	34.247		Vavg (fps) =	2.50	Red May Shear	
			Soil Gain, ft	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.010	navg =	0.031	Stress (psf)	Water Depth (ft)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.042	-0.031	-0.031	-0.021	0.000	0.000	-0.066	-0.198	Flow (cfs) =	0.57	0.36	0.11
40 ft				A	Avg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.01							
			Cross-section 9	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	8.365	8.594	8.823	8.969	9.021	9.021	8.979	8.885	8.635	35.420			3		9.0
		To eroded	l Surface Elev, ft	8.365	8.594	8.823	9.000	9.083	9.083	9.000	8.885	8.635	35.510		Vavg (fps) =	3.00	Bed Max Shear	Wotos Death (1)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	vvater Deptn (it)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.031	-0.063	-0.063	-0.021	0.000	0.000	-0.090	-0.271	Flow (cfs) =	0.50	0.26	0.08
L				A	Avg Bottor	m Gain, ft	0.00	Avg C	Clopper Sc	oil Loss, ft	-0.02							
[Soil Gain, in	0.000	0.000	0.001	0.000	0.001	0.001	0.002	0.001	0.000	Vol	ume	Avg	Bottom Ga	ain per Xsection, ft =	0.000
		Clop	oper Soil Loss, in	0.000	0.000	-0.001	-0.009	-0.008	-0.009	-0.002	0.000	0.000	[ft ³]	[in]	Avg Clop	per Soil Lo	ss per Xsection, ft =	-0.007
		Original	Surface Elev	752.587	1 thru	X-Se	ection Spa	acing, ft =	5	Origin	al Surfac	e Elev	342.912		7 thru 9:	X-	Section Spacing, ft =	5
Tra	pezoidal Analvsis	Eroded	Surface Elev	752.856	6:	Test S	Section Le	ength, ft =	40	Erode	ed Surfac	e Elev	343.572			Tes	t Section Length, ft =	40
114		S	oil Gain	0.260	0.020		gauge spa	acing, ft =	0.5		Soil Gair	1	0.017	0.001			gauge spacing, ft =	0.5
			CSLI	-0.530	-0.040	hannel w	idth meas	sured, ft =	4		CSLI		-0.677	-0.051		channel	width measured, ft =	4

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding and Overtopping

End-of-test and Post-test condition.

	ASTM D7208		Date:	6/13/12							SI	art Time:	3:58	PM		End Time:	4:28 PM	
			Soil:	Sandy Cla	ау						Target F	low (cfs):	1.00			Slope:	5%	
60 ft k	ong flume 40 ft t	est section	SRD:	Filtrexx So	ock		Inst	tallation:	Wooden	Stakes								
	2 ft v	vide flume										TEST						
	1 2 3		Outlet Weir								Weir						Channel Targets	
(oir widt	FLOW	10/	water Deptn, in								2.13						0.00	
			Elow Poto ofc	0.00							0.00	0.00					0.00	
011		, <u> </u>	Cross-section 1	0.00 A	в	С	D	F	F	G	н	1	[ft ²]	ſinl	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	1.857	2.123	2.359	2.415	2.421	2.434	2.434	2.274	2.008	9.213	1		3.2		2.3
	↓ ↓	To eroded	Surface Elev, ft	1.857	2.123	2.359	2.428	2.438	2.470	2.434	2.274	2.008	9.251		Vavg (fps) =	3.20	Red Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.026	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	0.000	-0.013	-0.016	-0.036	0.000	0.000	0.000	-0.038	-0.115	Flow (cfs) =	1.00	0.39	0.12
5 ft	Str	aw Bales		А	vg Botton	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.01							
			Cross-section 2	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	2.087	2.313	2.582	2.638	2.651	2.657	2.641	2.477	2.224	10.067			3.4		2.5
		To eroded	d Surface Elev, ft	2.087	2.313	2.595	2.648	2.667	2.684	2.657	2.477	2.224	10.106		Vavg (fps) =	3.40	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	Stress (psf)	
		Clo	pper Soil Loss, ft	0.000	0.000	-0.013	-0.010	-0.016	-0.026	-0.016	0.000	0.000	-0.039	-0.118	Flow (cfs) =	1.00	0.39	0.12
10 ft				A	vg Botton	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.01							
			Cross-section 3	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.791	2.060	2.326	2.362	2.382	2.385	2.382	2.215	1.985	9.008			3		2.3
		I o erodeo	Surface Elev, ft	1.791	2.060	2.333	2.392	2.392	2.395	2.431	2.228	1.985	9.064		Vavg (tps) =	3.00	Bed Max Shear Stress (psf)	Water Depth (ft)
		Cla	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.028	0.40	0.40
15 ft		CIU	pper Soir Loss, ri	0.000	U.000	-0.007	-0.030	-0.010	-0.010	-0.049	-0.013	0.000	-0.057	-0.171	Flow (crs) =	1.00	0.40	0.13
15 11			Cross-section 4	A	B	C.	0.00 D	F	F	G G	-0.01 H	1	[f+ ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf ft
		To origina	Surface Elev. ft	1.959	2,215	2.444	2.493	2.503	2.493	2.497	2.323	2.139	9.514	[]	1 0 0.20	0.3	1 0 0.00	2.2
		To eroded	d Surface Elev, ft	1.959	2.215	2.451	2.493	2.503	2.497	2.497	2.323	2.139	9.518		Vavg (fps) =	0.30	Rod Max Shoar	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.502	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	-0.007	0.000	0.000	-0.003	0.000	0.000	0.000	-0.004	-0.013	Flow (cfs) =	1.00	0.95	0.31
20 ft				Д	vg Botton	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	0.00							
		(Cross-section 5	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.634	1.903	2.159	2.254	2.297	2.306	2.339	2.172	1.939	8.617			0.21		1.9
		To eroded	d Surface Elev, ft	1.634	1.906	2.142	2.185	2.313	2.293	2.339	2.172	1.939	8.565		Vavg (fps) =	0.21	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.016	0.069	0.000	0.013	0.000	0.000	0.000	0.060	0.180	navg =	0.897	Stress (psf)	Water Deptr (it)
		Clo	pper Soil Loss, ft	0.000	-0.003	0.000	0.000	-0.016	0.000	0.000	0.000	0.000	-0.008	-0.023	Flow (cfs) =	1.00	1.33	0.43
25 ft				А	vg Botton	n Gain, ft	0.01	Avg C	lopper So	il Loss, ft	0.00							
			Cross-section 6	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	l Surface Elev, ft	1.827	2.073	2.320	2.336	2.346	2.359	2.316	2.195	1.978	8.937) ((f)	0.61		1.8
		I o erodeo	Surface Elev, ft	1.827	2.096	2.287	2.260	2.283	2.313	2.274	2.192	1.978	8.823	0.007	vavg (tps) =	0.61	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	Suil Gain, n	0.000	-0.023	0.000	0.075	0.002	0.046	0.043	0.003	0.000	-0.015	-0.046	Flow (cfs) -	0.535	1 /9	0.48
30 ft		0.0	ppor 000 2000, rt	0.000 A	va Botton	n Gain, ft	0.03	Ava C	lopper Sc	il Loss, ft	0.00	0.000	0.010	0.010	11011 (010) =	0.00		0.10
			Cross-section 7	A	В	С	D	E	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	1.637	1.886	2.126	2.169	2.169	2.169	2.103	2.067	1.824	8.237			2.59		2.1
		To eroded	d Surface Elev, ft	1.637	1.886	2.126	2.195	2.201	2.205	2.149	2.067	1.824	8.304		Vavg (fps) =	2.59	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.036	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	0.000	-0.026	-0.033	-0.036	-0.046	0.000	0.000	-0.068	-0.203	Flow (cfs) =	0.78	0.47	0.15
35 ft				A	vg Botton	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.02							
			Cross-section 8	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.867	2.116	2.329	2.372	2.382	2.385	2.375	2.175	1.936	9.028			3		2.3
		To eroded	Surface Elev, ft	1.867	2.116	2.372	2.402	2.415	2.405	2.425	2.175	1.936	9.103		Vavg (fps) =	3.00	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.029	Stress (psi)	
		Clo	pper Soil Loss, ft	0.000	0.000	-0.043	-0.030	-0.033	-0.020	-0.049	0.000	0.000	-0.074	-0.223	Flow (cfs) =	0.81	0.42	0.13
40 π	-	— —	Cross section 0	A	vg Botton	n Gain, π	0.00	Avg C	lopper Sc	I LOSS, IT	-0.02		10.21	[:-]	V@0.2d	V@064	V @ 0.94	To Wotor Surf. ft
		To origina	Surface Flow ft	1 742	1 079	2 105	2 206	2 2 4 6	2 2 2 6	2 292	2.006	1 954	[π] 9.670	Liul	v @ 0.20	2 42	v @ 0.80	10 Water Sun, n
		To erodec	Surface Elev. ft	1.742	1.978	2.195	2.372	2.392	2.408	2.346	2.096	1.854	8.813		Vavg (fps) =	3.42	Ded May Obser	2.0
			Soil Gain. ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	0.000	-0.066	-0.046	-0.082	-0.062	0.000	0.000	-0.135	-0.404	Flow (cfs) =	0.88	0.40	0.13
				A	vg Botton	n Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.03							
		ı	Soil Gain, in	0.000	0.000	0.001	0.004	0.000	0.001	0.000	0.000	0.000	Vol	ume	Avg	Bottom Ga	ain per Xsection, ft =	0.000
		Clop	oper Soil Loss, in	0.000	0.000	-0.004	-0.008	-0.008	-0.010	-0.010	-0.001	0.000	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.007
Original Surface Elev			231.400	1 thru	X-Se	ction Spa	acing, ft =	5	Origin	al Surface	e Elev	87.430		7 thru 9:	X-	Section Spacing, ft =	5	
Tre	nezoidal Analysia	Eroded	Surface Elev	231.452	6:	Test S	ection Le	ength, ft =	40	Erode	ed Surface	Elev	88.308			Tes	t Section Length, ft =	40
Ira	pezuluai Analysis	S	oil Gain	0.623	0.047	Ģ	auge spa	acing, ft =	0.5		Soil Gain		0.000	0.000			gauge spacing, ft =	0.5
			CSLI	-0.675	-0.051	hannel wi	dth meas	ured, ft =	4		CSLI		-0.878	-0.066		channel	width measured, ft =	4
	-																	

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding with Overtopping

End-of-test and Post-test With Upstream Sediment Deposition

			Date:	5/22/12							s	tart Time:	3:21	AM		End Time:	3:51 PM	
	ASTM D7208		Soil:	Sandy C	ay						Target F	low (cfs):	2.00		-	Slope:	5%	-
60 ft l	ong flume 40 ft t	est section	RECP:	Filtrexx S	iock		An	chorage:	Wooden	Stakes								
	2 ft	wide flume										TEST	DATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								0.00						0.00	
eir widt	th (ft) = 2	W	ater Velocity, ft/s								0.00						0.00	
0 ft	C D E F G H		Flow Rate, cfs	0.00							0.00	0.00					0.00	
			Cross-section 1	А	В	С	D	Е	F	G	Н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	4.906	5.198	5.344	5.417	5.458	5.417	5.354	5.208	5.063	21.207			4.6		5.3
	*	To eroded	I Surface Elev, ft	4.906	5.198	5.344	5.458	5.500	5.438	5.354	5.208	5.063	21.262		Vavg (fps) =	4.60	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.023	Stress (psf)	Water Depart(it)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.042	-0.042	-0.021	0.000	0.000	0.000	-0.056	-0.167	Flow (cfs) =	2.00	0.55	0.18
5 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.01							
			Cross-section 2	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	4.990	5.292	5.500	5.625	5.667	5.625	5.583	5.458	5.188	21.946			4.8		5.6
		To eroded	I Surface Elev, ft	4.990	5.292	5.500	5.625	5.719	5.698	5.667	5.458	5.188	22.040		Vavg (fps) =	4.80	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	0.000	-0.052	-0.073	-0.083	0.000	0.000	-0.094	-0.281	Flow (cfs) =	2.00	0.52	0.17
10 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.02							
			Cross-section 3	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	5.302	5.573	5.813	5.917	5.938	5.938	5.896	5.740	5.500	23.127			4.5		5.8
		To eroded	I Surface Elev, ft	5.302	5.573	5.833	5.917	5.969	5.958	5.927	5.740	5.500	23.168		Vavg (fps) =	4.50	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.023	Stress (psf)	Water Deptit (it)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.021	0.000	-0.031	-0.021	-0.031	0.000	0.000	-0.042	-0.125	Flow (cfs) =	1.59	0.55	0.18
15 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.01							
			Cross-section 4	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	5.458	5.708	5.990	6.063	6.104	6.125	6.083	5.906	5.688	23.785			0.39		5.8
		To eroded	Surface Elev, ft	5.458	5.750	5.979	6.104	6.167	6.156	6.146	5.906	5.688	23.899		Vavg (fps) =	0.39	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.010	navg =	0.451	Stress (psf)	water Deptri (it)
		Clop	oper Soil Loss, ft	0.000	-0.042	0.000	-0.042	-0.063	-0.031	-0.063	0.000	0.000	-0.118	-0.354	Flow (cfs) =	0.30	1.20	0.39
20 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.03							
			Cross-section 5	А	В	С	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	l Surface Elev, ft	5.615	5.896	6.146	6.281	6.313	6.323	6.323	6.229	6.010	24.684			0.23		5.8
		To eroded	I Surface Elev, ft	5.708	6.125	6.177	6.115	6.219	6.292	6.313	6.208	6.135	24.703		Vavg (fps) =	0.23	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.167	0.094	0.031	0.010	0.021	0.000	0.181	0.542	navg =	0.833	Stress (psf)	water Depth (ft)
		Clop	oper Soil Loss, ft	-0.094	-0.229	-0.031	0.000	0.000	0.000	0.000	0.000	-0.125	-0.200	-0.599	Flow (cfs) =	0.20	1.36	0.44
25 ft				A	vg Bottor	m Gain, ft	0.04	Avg C	lopper Sc	il Loss, ft	-0.05							
			Cross-section 6	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	l Surface Elev, ft	5.823	6.104	6.333	6.479	6.563	6.521	6.490	6.365	6.083	25.425			0.65		5.9
		To eroded	I Surface Elev, ft	6.063	6.240	6.375	6.146	6.146	6.302	6.521	6.406	6.292	25.135		Vavg (fps) =	0.65	Bed Max Shear	Mater Darth (6)
			Soil Gain, ft	0.000	0.000	0.000	0.333	0.417	0.219	0.000	0.000	0.000	0.507	1.521	navg =	0.214	Stress (psf)	vvater Depth (ft)
		Clop	oper Soil Loss, ft	-0.240	-0.135	-0.042	0.000	0.000	0.000	-0.031	-0.042	-0.208	-0.217	-0.651	Flow (cfs) =	0.35	0.84	0.27
30 ft				A	vg Bottor	m Gain, ft	0.11	Avg C	lopper So	il Loss, ft	-0.08							
			Cross-section 7	Α	В	С	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	6.146	6.396	6.656	6.771	6.802	6.813	6.792	6.646	6.396	26.590			3.3		6.6
1		To eroded	I Surface Elev, ft	6.156	6.406	6.656	6.802	6.833	6.854	6.823	6.688	6.396	26.696		Vavg (fps) =	3.30	Bed Max Shear	Water Death (//)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.041	Stress (psf)	water Depth (it)
		Clo	oper Soil Loss, ft	-0.010	-0.010	0.000	-0.031	-0.031	-0.042	-0.031	-0.042	0.000	-0.106	-0.318	Flow (cfs) =	1.72	0.81	0.26
35 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.02							
			Cross-section 8	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
1		To origina	I Surface Elev, ft	6.438	6.698	6.948	7.021	7.021	7.010	6.958	6.771	6.427	27.453			4.4		6.9
		To eroded	Surface Elev, ft	6.438	6.698	6.958	7.042	7.063	7.063	6.969	6.771	6.427	27.523		Vavg (fps) =	4.40	Bed Max Shear	Wotos Dopth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	Stress (psf)	water Deptri (it)
		Clo	oper Soil Loss, ft	0.000	0.000	-0.010	-0.021	-0.042	-0.052	-0.010	0.000	0.000	-0.069	-0.208	Flow (cfs) =	1.65	0.58	0.19
40 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper So	oil Loss, ft	-0.02							
1			Cross-section 9	А	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
1		To origina	l Surface Elev, ft	6.740	6.979	7.229	7.292	7.396	7.333	7.281	7.094	6.854	28.700			4.7		7.3
1		To eroded	I Surface Elev, ft	6.740	6.979	7.235	7.365	7.458	7.417	7.313	7.094	6.854	28.837		Vavg (fps) =	4.70	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.022	Stress (psf)	
1		Clop	oper Soil Loss, ft	0.000	0.000	-0.006	-0.073	-0.063	-0.083	-0.031	0.000	0.000	-0.138	-0.413	Flow (cfs) =	1.66	0.55	0.18
				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	il Loss, ft	-0.03							
	Soil Gain, i			0.000	0.000	0.001	0.009	0.005	0.002	0.001	0.001	0.000	Vol	ume	Avg	Bottom Ga	ain per Xsection, ft =	0.000
		Clop	oper Soil Loss, in	-0.005	-0.015	-0.004	-0.010	-0.016	-0.016	-0.012	0.000	-0.007	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.012
		Original	Surface Elev	584.288	1 thru	X-Se	ection Spa	acing, ft =	5	Origin	al Surfac	e Elev	275.490		7 thru 9:	Х-	Section Spacing, ft =	5
Tre	pezoidal Analysis	Eroded	Surface Elev	585.048	6:	Test \$	Section Le	ength, ft =	40	Erode	ed Surfac	e Elev	276.446			Tes	t Section Length, ft =	40
na		S	oil Gain	2.188	0.164	9	gauge spa	acing, ft =	0.5		Soil Gair	1	0.000	0.000			gauge spacing, ft =	0.5
			CSLI	-2.947	-0.221	hannel w	idth meas	sured, ft =	4		CSLI		-0.956	-0.072		channel	width measured, ft =	4

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding and Overtopping

End-of-test and Post-test condition.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

	Client:	GSWCC			Product:	Rock Check	over Geotextile		
	Flow:	0.5 cfs for 3	0 minutes		Test Date:	6/8/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.09	0.00	-0.034	1.46	6.36	2.80	0.38
	5	0.00	-0.11	0.00	-0.044	1.06	11.98	3.00	0.28
	10	0.00	-0.09	0.00	-0.035	1.50	12.79	2.69	0.39
	15	0.00	-0.09	0.00	-0.042	3.19	15.94	1.72	0.83
15" High	20	0.00	-0.10	0.00	-0.021	5.39	20.05	1.65	1.40
Check	25	1.02	-0.05	0.39	-0.026	5.24	19.76	0.50	1.36
Location	30	0.00	-0.08	0.00	-0.027	1.81	13.37	2.20	0.47
	35	0.00	-0.26	0.00	-0.086	1.42	12.64	2.68	0.37
	40	0.00	-0.21	0.00	-0.079	1.10	6.03	3.10	0.29
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				0.97	-1.55		118.92	0.82	-1.31

	Flow:	1.0 cfs for 3	30 minutes		Test Date:	6/19/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.22	0.00	-0.087	1.97	6.83	3.71	0.51
	5	0.00	-0.29	0.00	-0.108	1.57	12.93	3.98	0.41
	10	0.00	-0.30	0.00	-0.106	1.73	13.23	3.87	0.45
	15	0.22	-0.24	0.08	-0.078	5.75	20.71	2.35	1.49
15" High	20	0.86	-0.32	0.32	-0.121	6.38	21.88	1.28	1.66
Check	25	0.90	-0.14	0.35	-0.018	8.35	25.55	0.37	2.17
Location	30	0.00	-0.10	0.00	-0.039	2.09	13.89	2.04	0.54
	35	0.00	-0.15	0.00	-0.043	1.69	13.15	3.10	0.44
	40	0.00	-0.34	0.00	-0.118	1.54	6.43	3.43	0.40
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				2 87	-2 94		134.62	2 13	-2.18

	Flow:	2.0 cfs for 3	0 minutes		Test Date:	6/19/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.26	0.00	-0.102	3.03	7.82	4.37	0.79
	5	0.00	-0.26	0.00	-0.094	1.97	13.67	5.05	0.51
	10	0.00	-0.27	0.00	-0.094	2.17	14.03	4.95	0.56
	15	0.17	-0.21	0.06	-0.068	5.47	20.20	3.84	1.42
15" High	20	0.48	-0.31	0.18	-0.102	7.56	24.09	1.80	1.96
Check	25	1.14	-0.49	0.42	-0.119	9.45	27.61	0.86	2.46
Location	30	0.00	-0.06	0.00	-0.019	2.76	15.14	3.60	0.72
	35	0.00	-0.52	0.00	-0.167	2.17	14.03	4.42	0.56
	40	0.00	-0.46	0.00	-0.175	2.09	6.94	4.80	0.54
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				2.22	-3.66		143.53	1.54	-2.55

CJS 6/30/2012 (Rev. 8/21/14)

Quality Review / Date

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Test Date: 6/19/2012

			Date:	6/8/12							S	tart Time:	3:58	PM		End Time:	4:28 PM	
	ASTM D7208		Soil:	Sandy C	lay						Target F	low (cfs):	0.50		-	Slope:	5%	-
60 ft le	ong flume 40 ft t	est section	SRD:	Rock Ch	eck		Inst	allation:	over Geo	otextile								
	2 ft v	vide flume										TEST I	DATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								2.25						1.00	
/eir widt	h (ft) = 2	Wa	ater Velocity, ft/s								0.00						3 - 4	
0 ft	CDEFGH		Flow Rate, cfs	0.00							0.00	0.00					0.50	
			Cross-section 1	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.873	2.139	2.349	2.431	2.444	2.461	2.438	2.260	2.021	9.254			2.8		2.3
	•	To eroded	Surface Elev, ft	1.873	2.139	2.352	2.451	2.467	2.477	2.441	2.260	2.021	9.288		Vavg (fps) =	2.80	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.029	Stress (psr)	/
		Clop	oper Soil Loss, ft	0.000	0.000	-0.003	-0.020	-0.023	-0.016	-0.003	0.000	0.000	-0.034	-0.102	Flow (cfs) =	0.50	0.38	0.12
5 ft				А	vg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	oil Loss, ft	-0.01							
			Cross-section 2	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	2.073	2.326	2.579	2.677	2.684	2.677	2.671	2.474	2.241	10.133			3		2.6
		To eroded	Surface Elev, ft	2.073	2.326	2.579	2.687	2.700	2.717	2.687	2.474	2.241	10.177		Vavg (fps) =	3.00	Bed Max Shear Stress (psf)	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.022	0.000	0.00
10.6		Ciop	oper Soil Loss, ft	0.000	0.000	0.000	-0.010	-0.016	-0.039	-0.016	0.000	0.000	-0.044	-0.131	Flow (cfs) =	0.50	0.28	0.09
10 11			Trace continue 2	بم م		n Gain, it	0.00	Avg C	ioppei Sc	C C C	-0.01		re. ² 1	[:=]	V @ 0.24	V@06d	V@084	To Water Surf. ft
		To original	Surface Flev ft	1 824	2 087	2 3/9	2 444	2.461	2 470	2 457	2 277	2 044	0 253	[m]	v @ 0.2u	2.69	V @ 0.00	2 4
		To eroded	Surface Elev, ft	1.824	2.087	2.356	2.461	2 484	2 4 9 0	2 461	2 277	2 044	9.288		Vavg (fps) =	2.69	5 1 1 0	2
1			Soil Gain ft	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.031	Stress (psf)	Water Depth (ft)
		Clor	oper Soil Loss, ft	0.000	0.000	-0.007	-0.016	-0.023	-0.020	-0.003	0.000	0.000	-0.035	-0.105	Flow (cfs) =	0.50	0.39	0.12
15 ft		0.01		A	vg Bottor	n Gain. ft	0.00	Ava C	lopper Sc	oil Loss. ft	-0.01				(5.0) =			
	-		Cross-section 4	A	в	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.932	2.185	2.441	2.559	2.569	2.592	2.569	2.388	2.152	9.690			1.72		2.3
		To eroded	Surface Elev, ft	1.932	2.185	2.441	2.572	2.579	2.635	2.572	2.388	2.152	9.732		Vavg (fps) =	1.72	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.080	Stress (psf)	Water Depth (ft)
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.013	-0.010	-0.043	-0.003	0.000	0.000	-0.042	-0.125	Flow (cfs) =	0.50	0.83	0.27
20 ft				Д	vg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	oil Loss, ft	-0.01							
		0	Cross-section 5	А	В	С	D	Е	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.637	1.919	2.142	2.280	2.303	2.326	2.280	2.159	1.939	8.628			1.65		1.9
		To eroded	Surface Elev, ft	1.637	1.919	2.156	2.283	2.310	2.329	2.290	2.159	1.978	8.648		Vavg (fps) =	1.65	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.118	Stress (psf)	water Deptri (it)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.013	-0.003	-0.007	-0.003	-0.010	0.000	-0.039	-0.021	-0.062	Flow (cfs) =	0.50	1.40	0.45
25 ft				A	vg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	oil Loss, ft	-0.01							
			Cross-section 6	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.857	2.087	2.339	2.421	2.434	2.425	2.434	2.218	1.995	9.145			0.5		1.8
		To eroded	Surface Elev, ft	1.837	2.077	2.270	2.270	2.241	2.178	2.356	2.257	1.995	8.783		Vavg (fps) =	0.50	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.020	0.010	0.069	0.151	0.194	0.246	0.079	0.000	0.000	0.388	1.165	navg =	0.382	Stress (psr)	
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.039	0.000	-0.026	-0.079	Flow (cfs) =	0.44	1.36	0.44
30 ft				A	vg Bottor	m Gain, ft	0.09	Avg C	lopper Sc	oil Loss, ft	0.00		2					
			Cross-section 7	A	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.617	1.873	2.100	2.211	2.238	2.238	2.215	2.037	1.827	8.331		N (C)	2.2		2.1
		I o eroded	Surrace Elev, ft	1.617	1.873	2.110	2.215	2.244	2.241	2.234	2.054	1.827	8.358	0.000	vavg (tps) =	2.20	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clor	Soli Galii, it	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Flow (ofo)	0.043	0.47	0.15
35 ft		Ciop	701 JUII LUSS, II	0.000	va Bottor	n Gain #	0.003	-0.007 Ava C	lopper Sc	billose ft	-0.010	0.000	-0.027	-0.062	1 IOW (CIS) =	0.00	0.47	0.15
55 ft			Cross-section 8	A	B		0.00 D	F	F	G G	н	1	[f+ ²]	[in]	V @ 0.2d	V @ 0.64	V @ 0.8d	To Water Surf #
		To original	Surface Elev ft	1 847	2 110	2 346	2 425	2 4 4 4	2 434	2 408	2 192	1 939	9 137	[]	100.20	2.68		24
		To eroded	Surface Elev. ft	1.847	2.110	2.379	2.470	2.500	2.454	2.448	2.192	1.939	9.224		Vavg (fps) =	2.68	Dad May Ohana	2
			Soil Gain. ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.030	Stress (psf)	Water Depth (ft)
		Clor	oper Soil Loss, ft	0.000	0.000	-0.033	-0.046	-0.056	-0.020	-0.039	0.000	0.000	-0.086	-0.259	Flow (cfs) =	0.63	0.37	0.12
40 ft				A	vg Bottor	n Gain, ft	0.00	Avg C	lopper Sc	u Dil Loss, ft	-0.02							
1			Cross-section 9	A	В	С	D	E	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.765	1.995	2.185	2.323	2.326	2.306	2.297	2.073	1.818	8.665			3.1		2.3
1		To eroded	Surface Elev, ft	1.765	1.995	2.208	2.362	2.372	2.343	2.313	2.073	1.818	8.743		Vavg (fps) =	3.10	Bed Max Shear	Water D. H. (1)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.022	Stress (psf)	vvater Depth (ft)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.023	-0.039	-0.046	-0.036	-0.016	0.000	0.000	-0.079	-0.236	Flow (cfs) =	0.57	0.29	0.09
L				A	Vg Bottor	m Gain, ft	0.00	Avg C	lopper Sc	oil Loss, ft	-0.02							
		Sc	il Loss / Gain, in	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Vol	ume	Avg	Bottom Ga	ain per Xsection, ft =	0.000
		Clop	per Soil Loss, in	0.000	0.000	-0.004	-0.008	-0.010	-0.010	-0.005	0.000	-0.002	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.022
		Original	Surface Elev	234.510	1 thru	X-Se	ection Spa	acing, ft =	5	Origin	nal Surfac	e Elev	88.175		7 thru 9:	X-	Section Spacing, ft =	5
Tra	pezoidal Analysis	Eroded	Surface Elev	234.396	6:	Test S	Section Le	ngth, ft =	40	Erode	ed Surfac	e Elev	88.872			Tes	t Section Length, ft =	40
		S	oil Gain	0.971	0.073	ę	gauge spa	acing, ft =	0.5		Soil Gain		0.000	0.000			gauge spacing, ft =	0.5
1		l	CSLI	-0.856	-0.064	hannel w	idth meas	ured, ft =	4		CSLI		-0.697	-0.052		channel	width measured, ft =	4

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding and Seepage

End-of-test and Post-test condition.

			Date:	6/19/12							S	tart Time:	2:58	AM		End Time:	3:28 PM	
	ASTM D7208		Soil:	Sandy Cla	ау						Target F	low (cfs):	1.00			Slope:	5%	
60 ft lo	ong flume 40 ft te	est section	RECP:	Rock Che	eck		And	chorage:	over Geo	textile								
	2 ft v	vide flume										TEST D	DATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								2.25						1.50	
Veir width	n (ft) = 2	Wa	ater Velocity, ft/s								0.00						4 - 5	
0 ft	C D E F G H		Flow Rate, cfs	0.00							0.00	0.00					1.00	
			Cross-section 1	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.752	1.972	2.211	2.323	2.333	2.326	2.320	2.175	1.939	8.767			3.71		2.2
	*	To eroded	Surface Elev, ft	1.752	1.972	2.221	2.369	2.372	2.375	2.343	2.175	1.939	8.854		Vavg (fps) =	3.71	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.027	Stress (psf)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.010	-0.046	-0.039	-0.049	-0.023	0.000	0.000	-0.087	-0.262	Flow (cfs) =	1.00	0.51	0.16
5 ft	Stra	aw Bales		A	vg Botton	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.02							
			Cross-section 2	А	В	С	D	Е	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.959	2.228	2.461	2.487	2.500	2.493	2.441	2.188	1.985	9.389			3.98		2.4
		To eroded	Surface Elev, ft	1.959	2.228	2.493	2.549	2.507	2.539	2.510	2.188	1.985	9.497		Vavg (fps) =	3.98	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.022	Stress (pst)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.033	-0.062	-0.007	-0.046	-0.069	0.000	0.000	-0.108	-0.325	Flow (cfs) =	1.00	0.41	0.13
10 ft				A	vg Botton	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.02	-						
			Cross-section 3	A	В	С	D	E	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.824	2.051	2.274	2.329	2.346	2.320	2.283	2.031	1.811	8.727			3.87		2.3
		To eroded	Surface Elev, ft	1.824	2.051	2.310	2.369	2.398	2.372	2.329	2.031	1.811	8.833		Vavg (fps) =	3.87	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	Stress (pst)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.036	-0.039	-0.052	-0.052	-0.046	0.000	0.000	-0.106	-0.318	Flow (cfs) =	1.00	0.45	0.14
15 ft				A	vg Botton	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.03	-						
			Cross-section 4	А	В	С	D	E	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	2.067	2.320	2.510	2.549	2.566	2.552	2.484	2.247	2.014	9.646			2.35		2.1
		To eroded	Surface Elev, ft	2.067	2.362	2.595	2.562	2.602	2.474	2.408	2.244	2.008	9.642		Vavg (fps) =	2.35	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.079	0.075	0.003	0.007	0.081	0.243	navg =	0.087	Stress (pst)	
		Clop	oper Soil Loss, ft	0.000	-0.043	-0.085	-0.013	-0.036	0.000	0.000	0.000	0.000	-0.078	-0.233	Flow (cfs) =	1.00	1.49	0.48
20 ft				A	vg Botton	n Gain, ft	0.02	Avg C	lopper So	il Loss, ft	-0.02	-						
			Cross-section 5	A	В	С	D	E	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.883	2.136	2.270	2.287	2.326	2.297	2.254	2.060	1.808	8.752			1.28		1.7
		To eroded	Surface Elev, ft	1.916	2.297	2.274	2.162	2.205	2.126	2.041	2.047	1.854	8.556		Vavg (fps) =	1.28	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.125	0.121	0.171	0.213	0.013	0.000	0.317	0.951	navg =	0.170	Stress (pst)	
		Clop	oper Soil Loss, ft	-0.033	-0.161	-0.003	0.000	0.000	0.000	0.000	0.000	-0.046	-0.121	-0.364	Flow (cfs) =	1.00	1.66	0.53
25 ft				A	vg Botton	n Gain, ft	0.07	Avg C	lopper So	il Loss, ft	-0.03							
			Cross-section 6	A	В	С	D	E	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.978	2.221	2.451	2.474	2.497	2.490	2.408	2.211	1.995	9.378			0.37		1.7
		To eroded	Surface Elev, ft	2.087	2.178	2.405	2.372	2.382	2.362	2.303	2.093	1.975	9.044		Vavg (fps) =	0.37	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.043	0.046	0.102	0.115	0.128	0.105	0.118	0.020	0.352	1.056	navg =	0.705	Stress (psr)	
		Clop	oper Soil Loss, ft	-0.108	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.018	-0.054	Flow (cfs) =	0.51	2.17	0.70
30 ft				A	vg Botton	n Gain, ft	0.08	Avg C	lopper So	il Loss, ft	-0.01							
			Cross-section 7	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To original	Surface Elev, ft	1.601	1.886	2.142	2.172	2.149	2.159	2.119	1.873	1.627	8.069			2.04		2.0
		To eroded	Surface Elev, ft	1.601	1.886	2.162	2.195	2.165	2.175	2.123	1.873	1.627	8.108		Vavg (fps) =	2.04	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.051	Siless (psi)	
0.5 1		Clop	oper Soil Loss, ft	0.000	0.000	-0.020	-0.023	-0.016	-0.016	-0.003	0.000	0.000	-0.039	-0.118	Flow (cfs) =	0.71	0.54	0.17
35 ft				A	vg Botton	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.01							
			ross-section 8	A	В	С	D	E	F	G	н	1	[ft ²]	(in)	V @ 0.2d	v @ 0.6d	V @ 0.8d	10 Water Surf, ft
		To original	Surface Elev, ft	1.873	2.123	2.283	2.411	2.438	2.441	2.411	2.182	1.972	9.123			3.1		2.3
		Fo eroded	Surface Elev, ft	1.873	2.123	2.359	2.418	2.454	2.448	2.421	2.182	1.972	9.166		Vavg (fps) =	3.10	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.029	01/035 (p31)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.075	-0.007	-0.016	-0.007	-0.010	0.000	0.000	-0.043	-0.128	⊢low (cfs) =	0.87	0.44	0.14
40 ft				A	vg Botton	n Gain, ft	0.00	Avg C	iopper So	II Loss, ft	-0.01							T 111 (S 1)
			ross-section 9	A	В	C	D	Ë	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	v @ 0.6d	V @ 0.8d	10 Water Surf, ft
		10 original	Surface Elev, ft	1.860	2.093	2.349	2.388	2.392	2.365	2.320	2.060	1.808	8.903		Vour (fr.)	3.43		2.3
		10 eroded	Surrace Elev, ft	1.860	2.093	2.392	2.434	2.444	2.421	2.3/5	2.060	1.808	9.021	0.000	vavg (Ips) =	3.43	Bed Max Shear Stress (psf)	Water Depth (ft)
			Soli Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.025	0.10	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.043	-0.046	-0.052	-0.056	-0.056	0.000	0.000	-0.118	-0.354	⊢low (cfs) =	0.88	0.40	0.13
		- -	ill oos (Octoria	A	NUC BOLLON	o occ	0.00	Avg C	opper So	LUSS, ft	-0.03	0.000				Botton C	in par Vti ti	0.000
		Sc	m Luss / Gain, in	0.000	0.000	0.000	0.007	0.007	0.012	0.016	0.001	0.000	VOI	fiel	Avg		an per Asection, It =	0.000
		Origing	Surface Eleve	-0.002	-0.011	-0.016	-0.012	-0.011	-0.012	-0.011	U.UUU	-0.003	[ft"]	ເທງ	Avg Clop	νμει 30II L0	Soction Speciar f	-0.013
		Erodod	Surface Elow	227.320	1 thru 6:	A-SE	action Lo	nath ft	40	Erode	a Juriac		88 651		7 uitu 9:	Teel	t Section Longth #	40
Trap	ezoidal Analysis	c.oueu e.	oil Gain	2 871	0.215	1031.3			0.5	LIUG	Soil Gain		0.001	0.000		162	naune enacion f	0.5
			CSLI	-2 331	-0 175	hannel wi	dth mean	ured ft -	4		CSU		-0.607	-0.046		channel	width measured ft -	4
1				2.001	0.170								0.007	0.040		5. an 161		

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Pondin & Overtopping

End-of-test and Post-test

	ACTM 07000		Date:	6/19/12							S	tart Time:	4:44	AM		End Time:	5:14 PM	
	ASTM D7208		Soil:	Sandy C	lay						Target F	low (cfs):	2.00			Slope:	5%	
60 ft lo	ong flume 40 ft te	est section	RECP:	Rock Ch	eck		And	chorage:	over Geo	otextile								
	2 ft v	vide flume										TEST	DATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								2.75						1.50	
Veir widt	h(tt) = 2		ater Velocity, ft/s								0.00	0.00					5 - 6	
0 ft	CDEFGH	I — .	Flow Rate, crs	0.00	в	0	D	F	-		0.00	0.00	10.21	[:=]	V@0.2d	VOOR	2.00	To Woter Surf. ft
		To origina	Surface Elov ft	1 927	2 054	2 220	2 295	2 200	2 270	2 4 4 4	2 274	1 020	[ft]	լոյ	V @ 0.20	4 27	v @ 0.80	2.2
	Ļ	To eroder	Surface Elev, It	1.037	2.054	2.320	2.303	2.300	2.379	2.444	2.274	1.939	9.074		Vava (fos) -	4.37		2.2
		TO CIOUCO	Soil Gain ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	nava -	0.030	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clor	oper Soil Loss, ft	0.000	0.000	0.000	-0.026	-0.052	-0.085	-0.030	0.000	0.000	-0.102	-0.305	Flow (cfs) =	2.00	0.79	0.25
5 ft				A	va Bottor	n Gain. ft	0.00	Ava C	lopper So	il Loss. ft	-0.02				()			
			Cross-section 2	A	в	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	Surface Elev, ft	2.041	2.280	2.543	2.602	2.625	2.615	2.615	2.441	2.201	9.926			5.05		2.5
		To erodeo	Surface Elev, ft	2.041	2.280	2.559	2.625	2.690	2.680	2.638	2.441	2.198	10.020		Vavg (fps) =	5.05	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.001	0.002	navg =	0.020	Stress (psf)	Water Depth (ft)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.016	-0.023	-0.066	-0.066	-0.023	0.000	0.000	-0.094	-0.282	Flow (cfs) =	2.00	0.51	0.16
10 ft				A	vg Bottor	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.02							
			Cross-section 3	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.729	1.988	2.280	2.346	2.346	2.349	2.388	2.172	1.962	8.857			4.95		2.3
		To eroded	Surface Elev, ft	1.729	1.988	2.287	2.408	2.444	2.369	2.402	2.172	1.962	8.951		Vavg (fps) =	4.95	Bed Max Shear	Mater Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	water Deptri (it)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.007	-0.062	-0.098	-0.020	-0.013	0.000	0.000	-0.094	-0.282	Flow (cfs) =	1.79	0.56	0.18
15 ft				A	vg Bottor	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.02							
			Cross-section 4	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.909	2.182	2.438	2.490	2.520	2.526	2.516	2.343	2.116	9.523			3.84		2.1
		To eroded	Surface Elev, ft	1.909	2.182	2.444	2.559	2.556	2.484	2.431	2.343	2.162	9.534		Vavg (fps) =	3.84	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.043	0.085	0.000	0.000	0.057	0.171	navg =	0.051	Stress (psr)	,
		Clop	oper Soil Loss, ft	0.000	0.000	-0.007	-0.069	-0.036	0.000	0.000	0.000	-0.046	-0.068	-0.203	Flow (cfs) =	3.50	1.42	0.46
20 ft				A	vg Bottor	n Gain, ft	0.01	Avg C	lopper So	il Loss, ft	-0.02							
			Cross-section 5	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.578	1.854	2.103	2.201	2.224	2.254	2.234	2.123	1.886	8.386			1.8		1.6
		lo erodeo	Surface Elev, ft	1.578	1.877	2.188	2.264	2.231	2.080	2.051	2.133	1.932	8.310	0.504	Vavg (tps) =	1.80	Bed Max Shear Stress (psf)	Water Depth (ft)
		Class	Soil Gain, π	0.000	0.000	0.000	0.000	0.000	0.174	0.184	0.000	0.000	0.177	0.531	navg =	0.136	4.00	0.00
05.4		Cio	oper Soli Loss, rt	0.000	-0.023	-0.085	-0.062	-0.007	0.000	0.000	-0.010	-0.046	-0.102	-0.305	FIOW (CIS) =	2.21	1.96	0.63
25 II		— ·	ross-soction 6	م م		n Gain, n	0.04	Avg C	iopper So	G C	-0.03		r4+ ² 1	finl	V @ 0.2d	V @ 0.64	V @ 0.8d	To Water Surf. ft
		To origina	Surface Elev ft	1 736	1 975	2 224	2 3/3	2 352	2 3/10	2 303	2 172	1 962	8.802	[m]	V & 0.24	0.86	V & 0.00	1.5
		To eroded	Surface Elev. ft	1.818	2.070	2.287	2.339	2.313	2.047	1.883	2.080	2.090	8.503		Vavg (fps) =	0.86	Red May Chaor	1.0
			Soil Gain, ft	0.000	0.000	0.000	0.003	0.039	0.302	0.420	0.092	0.000	0.418	1.253	navg =	0.329	Stress (psf)	Water Depth (ft)
		Clo	oper Soil Loss, ft	-0.082	-0.095	-0.062	0.000	0.000	0.000	0.000	0.000	-0.128	-0.119	-0.358	Flow (cfs) =	1.35	2.46	0.79
30 ft				A	l Vg Bottor	n Gain, ft	0.10	Avg C	lopper So	il Loss, ft	-0.04				. ,			
			Cross-section 7	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.608	1.886	2.087	2.221	2.205	2.208	2.244	2.051	1.831	8.329			3.6		2.0
		To eroded	Surface Elev, ft	1.614	1.886	2.106	2.221	2.208	2.221	2.247	2.051	1.831	8.348		Vavg (fps) =	3.60	Bed Max Shear	Water D. H. (1)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.035	Stress (psf)	water Deptn (ft)
		Clop	oper Soil Loss, ft	-0.007	0.000	-0.020	0.000	-0.003	-0.013	-0.003	0.000	0.000	-0.019	-0.056	Flow (cfs) =	1.65	0.72	0.23
35 ft				A	vg Bottor	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.01							
			Cross-section 8	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.811	2.057	2.251	2.382	2.388	2.379	2.195	2.073	1.867	8.818			4.42		2.2
		To eroded	Surface Elev, ft	1.811	2.057	2.320	2.382	2.405	2.398	2.388	2.165	1.867	8.986		Vavg (fps) =	4.42	Bed Max Shear	Water Depth (ft)
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	Stress (pst)	
		Clop	oper Soil Loss, ft	0.000	0.000	-0.069	0.000	-0.016	-0.020	-0.194	-0.092	0.000	-0.167	-0.502	Flow (cfs) =	1.60	0.56	0.18
40 ft				A	Avg Bottor	n Gain, ft	0.00	Avg C	lopper So	il Loss, ft	-0.04							
			Cross-section 9	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	1.703	1.946	2.165	2.277	2.303	2.290	2.267	2.083	1.850	8.568		Maria (C.)	4.8		2.2
		10 erodec	Surrace Elev, ft	1.703	1.946	2.218	2.346	2.356	2.402	2.326	2.083	1.850	8.743	0.000	vavg (tps) =	4.80	Bed Max Shear Stress (psf)	Water Depth (ft)
			Soll Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.022	0.54	0.47
		Clop	oper Soil Loss, ft	0.000	0.000	-0.052	-0.069	-0.052	-0.112	-0.059	0.000	0.000	-0.175	-0.525	Flow (cts) =	1.67	0.54	0.17
\vdash			villoco/Coin in	Α	Ny Bottor		0.00	Avg C	opper So	LOSS, ft	-0.04	0.000	Vel	ime	۸۰۰۰	Bottom C	in por Vecction #	0.000
		Clor	mer Soil Loss in	0.000	-0.000	-0.013	-0.000	-0.000	-0.012	-0.015	-0.000	-0.000	1f+ ³ 1	 [in]	Ava Clor	pper Soil Lo	ss per X section ft -	-0.043
<u> </u>		Original	Surface Elev	228 147	3.001	y_e,	ection Sec	acing ft -	5	Origin	nal Surfac	e Elev	86 334	[]	7 thru 0-		Section Spacing ft -	5
		Eroded	Surface Elev	228.270	1 thru 6:	Test	Section Le	ngth. ft =	40	Erode	ed Surfac	e Elev	87.654			Tes	t Section Length. ft =	40
Trap	ezoidal Analysis	S	oil Gain	2.217	0.166	(gauge spr	cing, ft =	0.5		Soil Gair	1	0.000	0.000			gauge spacing. ft =	0.5
		-	CSLI	-2.340	-0.176	hannel w	idth meas	ured, ft =	4		CSLI		-1.321	-0.099		channel	width measured, ft =	4

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding and Overtopping

End-of-test and Post-test condition.

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

	Client:	GSWCC			Product:	Silt Fence +		Steel Posts & Win	re Fence
	Flow:	0.5 cfs for 3	30 minutes		Test Date:	7/18/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.17	0.00	-0.078	0.91	5.84	3.03	0.24
	5	0.02	-0.08	0.01	-0.037	1.54	12.86	2.13	0.40
	10	0.00	-0.41	0.00	-0.161	1.77	13.30	1.82	0.46
	15	0.00	-0.28	0.00	-0.105	1.57	12.93	1.63	0.41
21" High	20	0.03	-0.24	0.01	-0.087	3.07	15.72	1.87	0.80
Check	25	0.10	-0.08	0.03	-0.035	4.88	19.10	0.39	1.27
Location	30	0.35	-0.43	0.13	-0.207	1.93	13.59	2.75	0.50
	35	0.11	-0.51	0.06	-0.181	3.27	16.09	2.86	0.85
	40	0.01	-0.44	0.00	-0.193	1.69	6.58	2.98	0.44
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				0.77	-4.14		116.02	0.67	-3.57

	Flow:	0.5 cfs for 3	0 minutes		Test Date:	7/20/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.36	0.00	-0.163	1.18	6.10	2.96	0.31
	5	0.00	-0.41	0.00	-0.177	1.89	13.52	2.91	0.49
	10	0.00	-0.45	0.00	-0.173	1.77	13.30	2.81	0.46
	15	0.19	-0.22	0.09	-0.086	4.06	17.56	2.99	1.05
21" High	20	0.30	-0.22	0.15	-0.068	5.04	19.39	0.78	1.31
Check	25	0.37	-0.12	0.18	-0.031	6.69	22.47	0.72	1.74
Location	30	0.07	-1.42	0.01	-0.432	3.98	17.41	2.75	1.03
	35	0.52	-0.37	0.13	-0.119	1.93	13.59	3.07	0.50
	40	0.58	-0.08	0.22	-0.042	-0.08	5.07	3.06	-0.02
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				2.90	-4.78		128.42	2.26	-3.73

CJS 7/23/2012 (Rev. 8/21/14)

Quality Review / Date

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

Client: GSWCC Product: Silt Fence + Steel Posts & Wire Fence Flow: 0.5 cfs for 30 minutes Test Date: 7/18/2012 Water & Channel Elevations by Station Original Channel Bottom 5 Water Surface Eroded Channel Bottom Elevation Change from Start of Test Section, ft. 0 -5 -10 -15 -20 -25 0 5 10 30 35 40 ¹⁵ Station Along Test Section, ft. ²⁵

			Date:	7/18/12							SI	tart Time:			5:00 PM	End Time:	5:30 PM	
	ASTM D7208		Soil:	Sandy C	lay						Target F	low (cfs):			0.50	Slope:	5%	-
60 ft I	ong flume 40 ft t	test section	SRD:	Silt Fenc	e +		Inst	tallation:	Steel Po:	sts & Wire	e Fence							
	2 ft v	wide flume										TEST D	ATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								1.50						1.00	
eir widt	h (ft) = 2	W	ater Velocity, ft/s								0.00						0.00	
0 ft	CDEFG H		Flow Rate, cfs	0.00							0.00	0.00					0.00	
			Cross-section 1	A	В	С	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.010	1.506	2.034	2.457	2.493	2.457	1.978	1.467	0.991	7.760			3.03		2.4
	•	To eroded	d Surface Elev, ft	1.010	1.506	2.034	2.520	2.516	2.500	1.978	1.467	0.991	7.838		Vavg (fps) =	3.03	Bed Max Shear Stress (osf)	Water Depth (ft)
		01-0	SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	0.04	0.00
E 41		Cio	pper Soil Loss, rt	0.000	0.000	0.000	-0.062	-0.023	-0.043	0.000	0.000	0.000	-0.078	-0.233	FIOW (CIS) =	0.50	0.24	0.08
51			Cross-soction 2	^		n Gain, n	0.00	-	- Kig C	C C	п 2035, П	-0.01	r#* ² 1	[in]	V @ 0.2d	V@06d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev ft	0.968	1 509	2 005	2 467	2 510	2 421	1 991	1 555	1 119	7.818	[111]	v @ 0.2u	2 13	V @ 0.00	24
		To eroded	d Surface Elev. ft	0.968	1.509	2.005	2.516	2.523	2.408	1.991	1.555	1.119	7.847		Vavg (fps) =	2.13	Red May Chaor	
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.009	0.026	navg =	0.040	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	0.000	-0.049	-0.013	0.000	0.000	0.000	0.000	-0.037	-0.112	Flow (cfs) =	0.50	0.40	0.13
10 ft				A	vg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.01						
		(Cross-section 3	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	0.892	1.348	1.834	2.290	2.336	2.329	1.804	1.316	0.794	7.128			1.82		2.3
		To eroded	d Surface Elev, ft	0.892	1.348	1.834	2.444	2.464	2.352	1.804	1.316	0.794	7.289		Vavg (fps) =	1.82	Bed Max Shear	Water Depth (ft)
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.051	Stress (psf)	Water Deptri (it)
		Clop	pper Soil Loss, ft	0.000	0.000	0.000	-0.154	-0.128	-0.023	0.000	0.000	0.000	-0.161	-0.482	Flow (cfs) =	0.50	0.46	0.15
15 ft				A	vg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.03						
			Cross-section 4	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.129	1.617	2.090	2.556	2.612	2.539	2.047	1.591	1.112	8.159			1.63		2.6
		l o erodeo	d Surface Elev, ft	1.129	1.617	2.096	2.644	2.697	2.556	2.060	1.591	1.112	8.264	0.000	Vavg (tps) =	1.63	Bed Max Shear Stress (psf)	Water Depth (ft)
		Close	SoliGain, it	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.053	0.41	0.12
20 ft		City	pper Soir Loss, ri	0.000	0.000	-0.007	-0.089	-0.065	-0.016 Avg C	-0.013	illoss ft	-0.02	-0.105	-0.315	FIOW (CIS) =	0.50	0.41	0.13
20 11			Cross-section 5	A	B	C	D.00	F	F	G	н 1000, н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	0.797	1.237	1.752	2.208	2.297	2.244	1.781	1.302	0.830	6.876			1.87		2.1
		To eroded	d Surface Elev, ft	0.797	1.237	1.837	2.270	2.316	2.260	1.755	1.302	0.830	6.954		Vavg (fps) =	1.87	Bed Max Shear	
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.026	0.000	0.000	0.009	0.026	navg =	0.072	Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.085	-0.062	-0.020	-0.016	0.000	0.000	0.000	-0.087	-0.262	Flow (cfs) =	0.50	0.80	0.26
25 ft				A	vg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.02						
			Cross-section 6	A	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.017	1.460	1.923	2.392	2.520	2.490	2.047	1.588	1.109	7.804			0.39		2.1
		To eroded	d Surface Elev, ft	1.017	1.460	1.903	2.434	2.539	2.490	1.998	1.581	1.109	7.812		Vavg (fps) =	0.39	Bed Max Shear	Water Depth (ft)
			SoilGain, ft	0.000	0.000	0.020	0.000	0.000	0.000	0.049	0.007	0.000	0.027	0.082	navg =	0.468	Stiess (psi)	
20.4		Cioj	pper Soil Loss, ft	0.000	0.000	0.000	-0.043	-0.020	0.000	0.000	0.000	0.000	-0.035	-0.105	FIOW (CTS) =	0.32	1.27	0.41
30 ft			Cross section 7	μ 		n Gain, n	0.01	F	Avg C	opper So	I LOSS, IT	-0.01	r4+ ² 1	finl	V @ 0.24	V@064	Vene	To Wotor Surf. ft
		To origina	I Surface Elev ft	2 569	2 897	3 4 1 9	3 835	3 878	3 868	3 455	2 927	2 457	13 439	[III]	v @ 0.2u	2 75	v @ 0.80	3.7
		To eroded	d Surface Elev. ft	2.569	2.877	3.389	3.720	3.901	4.121	3.360	2.972	2.457	13.515		Vavg (fps) =	2.75	Red May Chaor	0.1
		2.0400	SoilGain, ft	0.000	0.020	0.030	0.115	0.000	0.000	0.095	0.000	0.000	0.131	0.394	navg =	0.036	Stress (psf)	Water Depth (ft)
		Clo	pper Soil Loss, ft	0.000	0.000	0.000	0.000	-0.023	-0.253	0.000	-0.046	0.000	-0.207	-0.620	Flow (cfs) =	0.88	0.50	0.16
35 ft				β	vg Bottor	n Gain, ft	0.03		Avg C	lopper Sc	il Loss, ft	-0.04						
		(Cross-section 8	A	В	С	D	E	F	G	н	Ι	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	2.654	2.956	3.494	3.835	4.016	4.029	3.655	3.268	2.799	14.022			2.86		3.9
		To eroded	d Surface Elev, ft	2.654	2.976	3.537	3.911	4.137	4.101	3.694	3.182	2.808	14.146		Vavg (fps) =	2.86	Bed Max Shear	Water Depth (ft)
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.085	0.000	0.057	0.171	navg =	0.049	Stress (psf)	Water Deptri (it)
		Clop	pper Soil Loss, ft	0.000	-0.020	-0.043	-0.075	-0.121	-0.072	-0.039	0.000	-0.010	-0.181	-0.543	Flow (cfs) =	1.56	0.85	0.27
40 ft				A	vg Bottor	n Gain, ft	0.01		Avg C	lopper So	il Loss, ft	-0.04						
			Cross-section 9	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	2.530	2.871	3.353	3.835	4.022	4.009	3.652	3.097	2.680	13.752			2.98		3.9
		I o erodeo	a Surrace Elev, ft	2.539	2.969	3.360	3.858	4.035	4.029	3.645	3.225	2.713	13.943	0.007	vavg (tps) =	2.98	Bed Max Shear Stress (psf)	Water Depth (ft)
		01-	SullGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.000	0.000	0.002	0.007	Flow (of a)	0.030	0.44	0.14
			pper JUII LOSS, Tt	-0.010	va Bottor	n Gain ft	0.023	-0.013	-0.020 Ava C	lopper Se	-0.128	-0.033	-0.193	-0.579	1 IOW (CIS) =	0.04	0.44	0.14
	I	I	Soil Gain, in	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.005	0.000	Vol	ume	Ava	Bottom Ga	ain per Xsection. ft =	0.001
		Clor	oper Soil Loss, in	-0.001	-0.007	-0.008	-0.029	-0.023	-0.011	-0.003	-0.007	-0.002	[ft ³]	[in]	Avg Cloc	oper Soil Lo	ess per Xsection, ft =	-0.037
		Original	Surface Elev	188.815	1 thru	X-Se	ection Spa	acing, ft =	5	Origin	al Surfac	e Elev	138.091		7 thru 9:	X-	Section Spacing, ft =	5
-		Eroded	Surface Elev	190.893	6:	Test S	ection Le	ngth, ft =	40	Erode	ed Surface	e Elev	139.377			Tes	t Section Length, ft =	40
l ra	apezoidai Analysis	S	oil Gain	0.156	0.012	ç	gauge spa	acing, ft =	1		Soil Gain		0.618	0.046			gauge spacing, ft =	0.5
1			CSLI	-2.234	-0.168	hannel wi	dth meas	ured, ft =	8		CSLI		-1.904	-0.143		channel	width measured, ft =	4

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding Starting

Increased Ponding Reaches Maximum and then Blows Out Under Fence

Post-test With Upstream Scour Hole

	ACTM D7209		Date:	7/20/12							S	tart Time:			5:00 PM	End Time:	5:30 PM	
	ASTM D7208		Soil:	Sandy Cla	ay						Target F	low (cfs):			0.50	Slope:	5%	-
60 ft k	ong flume 40 ft f	test section	SRD:	Silt Fence	e +		Inst	allation:	Steel Po:	sts & Wire	e Fence							
	2 ft	wide flume										TEST D	ATA					
	1 2 3		Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								1.50						1.00	
eir widtl	h (ft) = 2	Wi	ater Velocity, ft/s								0.00						0.00	
0 ft	CDEFG H		Flow Rate, cfs	0.00							0.00	0.00					0.00	
			Cross-section 1	A	В	С	D	E	F	G	н	I	[ft²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	↓	To origina	Surface Elev, ft	0.928	1.371	1.864	2.303	2.392	2.369	1.880	1.411	0.981	7.333			2.96		2.3
		To eroded	Surface Elev, ft	0.928	1.371	1.864	2.467	2.431	2.425	1.890	1.411	0.981	7.496		vavg (tps) =	2.96	Bed Max Shear Stress (psf)	Water Depth (ft)
		Class	SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	0.04	0.40
5 4		Clop	oper Soil Loss, ft	0.000	0.000	0.000	-0.164	-0.039	-0.056	-0.010	0.000	0.000	-0.163	-0.489	Flow (cfs) =	0.50	0.31	0.10
511			Cross costion 2	م م		n Gain, n	0.00	-	Avg C	opper Su		-0.03	r64 ² 1	finl	V @ 0.24	V @ 0.64	V@084	To Wotor Surf. ft
		To origina	Surface Flev ft	0.965	1 470	1 975	2 4 3 1	2 520	2 484	2 011	1 555	1 102	7 806	[m]	v @ 0.2u	2 Q1	V @ 0.00	2 4
		To orodoo	Surface Elev, It	0.905	1.470	1.975	2.431	2.520	2.404	2.011	1.555	1.102	7.000		Vova (foc) -	2.91		2.4
		TO eloued	SoilGain ft	0.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	nava –	0.033	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clor	oner Soil Loss ft	0.000	0.000	0.000	-0 197	-0.079	-0.030	0.000	0.000	0.000	-0.177	-0.531	Flow (cfs) =	0.50	0.49	0.16
10 ft		0.0	5p01 001 2000, It	0.000 A	va Bottor	n Gain, ft	0.00	0.070	Avg C	lopper Sc	oil Loss, ft	-0.03	0	0.001	1.1011 (010) =	0.00	0.10	0.10
			Cross-section 3	A	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	Surface Elev, ft	0.925	1.401	1.870	2.402	2.405	2.303	1.818	1.375	0.915	7.324			2.81		2.4
		To eroded	I Surface Elev, ft	0.925	1.401	1.893	2.579	2.546	2.300	1.818	1.375	0.915	7.495		Vavg (fps) =	2.81	Red May Shear	
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.002	0.007	navg =	0.033	Stress (psf)	Water Depth (ft)
		Clo	oper Soil Loss, ft	0.000	0.000	-0.023	-0.177	-0.141	0.000	0.000	0.000	0.000	-0.173	-0.518	Flow (cfs) =	0.50	0.46	0.15
15 ft				β	Vg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.04						
			Cross-section 4	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.106	1.581	2.110	2.582	2.651	2.562	2.083	1.627	1.171	8.229			2.99		2.4
		To eroded	I Surface Elev, ft	1.106	1.581	2.090	2.677	2.717	2.441	2.087	1.627	1.171	8.228		Vavg (fps) =	2.99	Bed Max Shear	
			SoilGain, ft	0.000	0.000	0.020	0.000	0.000	0.121	0.000	0.000	0.000	0.087	0.262	navg =	0.054	Stress (psf)	Water Depth (ft)
		Clo	oper Soil Loss, ft	0.000	0.000	0.000	-0.095	-0.066	0.000	-0.003	0.000	0.000	-0.086	-0.259	Flow (cfs) =	0.50	1.05	0.34
20 ft				A	vg Bottor	n Gain, ft	0.02		Avg C	lopper Sc	oil Loss, ft	-0.02						
		(Cross-section 5	А	В	С	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	0.830	1.293	1.818	2.297	2.365	2.300	1.798	1.322	1.194	7.139			0.78		1.9
		To eroded	Surface Elev, ft	0.830	1.293	1.883	2.336	2.365	2.073	1.857	1.322	1.194	7.055		Vavg (fps) =	0.78	Bed Max Shear	Water Depth (ft)
			SoilGain, ft	0.000	0.000	0.000	0.000	0.000	0.226	0.000	0.000	0.000	0.151	0.453	navg =	0.239	Stress (psf)	Water Deptir (it)
		Clop	oper Soil Loss, ft	0.000	0.000	-0.066	-0.039	0.000	0.000	-0.059	0.000	0.000	-0.068	-0.203	Flow (cfs) =	0.50	1.31	0.42
25 ft				A	vg Bottor	m Gain, ft	0.03		Avg C	lopper Sc	oil Loss, ft	-0.02						
			Cross-section 6	Α	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.047	1.506	1.972	2.451	2.503	2.425	1.959	1.526	1.109	7.775			0.72		2.0
		To eroded	I Surface Elev, ft	1.047	1.506	1.959	2.385	2.523	2.257	2.031	1.493	1.109	7.624		Vavg (fps) =	0.72	Bed Max Shear	Water Depth (ft)
			SoilGain, ft	0.000	0.000	0.013	0.066	0.000	0.167	0.000	0.033	0.000	0.182	0.545	navg =	0.313	Stress (psr)	
		Clop	oper Soil Loss, ft	0.000	0.000	0.000	0.000	-0.020	0.000	-0.072	0.000	0.000	-0.031	-0.092	Flow (cfs) =	0.80	1.74	0.56
30 ft				A	vg Bottor	m Gain, ft	0.03		Avg C	lopper So	oil Loss, ft	-0.01						
			Cross-section 7	A	В	С	D	E	F	G	н	1	[ft*]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	Surface Elev, ft	2.661	2.838	3.310	3.907	3.927	3.944	3.494	2.966	2.631	13.562			2.75		3.7
		I o erodeo	Surrace Elev, ft	2.605	2.927	3.337	3.917	4.049	4.098	3.642	3.123	2.992	13.985	0.000	vavg (tps) =	2.75	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clas	SoliGain, it	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.009	1.206	Flow (ofo)	1.92	1.02	0.33
35 ft		CIO	201 JUII LUSS, II	0.000	-0.069	n Gain #	0.01	-0.121	-0.134 Ava C	-0.140		-0.301	-0.432	-1.290	1 low (cis) =	1.02	1.05	0.35
55 ft			Cross-section *	Δ	R		D.01	F	F	G	н	1	[ft+ ²]	[in]	V @ 0.24	V @ 0 64	V @ 0.84	To Water Surf #
		To origina	I Surface Elev ft	2 730	3 045	3 576	4 006	4 147	4 127	3 773	3 255	2 858	14 385	[]	1 0 0.20	3.07	1 0 0.00	4 1
		To erodeo	Surface Elev. ft	2.700	2.940	3.704	4.055	4.213	4.160	3.753	3.228	2.648	14.370		Vavg (fps) =	3.07	Rod May Char	
			SoilGain, ft	0.030	0.105	0.000	0.000	0.000	0.000	0.020	0.026	0.210	0.134	0.402	navg =	0.032	Stress (psf)	Water Depth (ft)
		Clor	oper Soil Loss, ft	0.000	0.000	-0.128	-0.049	-0.066	-0.033	0.000	0.000	0.000	-0.119	-0.358	Flow (cfs) =	0.99	0.50	0.16
40 ft				A	vg Bottor	n Gain, ft	0.04		Avg C	lopper Sc	il Loss, ft	-0.03			. ,			
			Cross-section 9	A	В	С	D	E	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	2.618	2.913	3.330	3.822	4.003	3.999	3.632	3.107	2.644	13.760			3.06		3.9
		To eroded	I Surface Elev, ft	2.618	2.874	3.327	3.724	3.930	4.062	3.501	3.015	2.644	13.579		Vavg (fps) =	3.06	Bed Max Shear	
			SoilGain, ft	0.000	0.039	0.003	0.098	0.072	0.000	0.131	0.092	0.000	0.222	0.666	navg =	#NUM!	Stress (psf)	vvater Depth (ft)
		CJS 07166	oper Soil Loss, ft	0.000	0.000	0.000	0.000	0.000	-0.062	0.000	0.000	0.000	-0.042	-0.125	Flow (cfs) =	#NUM!	-0.02	-0.01
				A	vg Bottor	n Gain, ft	0.05		Avg C	lopper Sc	oil Loss, ft	-0.01						
		•	Soil Gain, in	0.002	0.008	0.001	0.006	0.004	0.020	0.008	0.007	0.012	Volu	ume	Avg	Bottom Ga	ain per Xsection, ft =	0.048
L		Clop	oper Soil Loss, in	0.000	0.000	-0.012	-0.041	-0.022	-0.010	-0.004	0.000	0.000	[ft ³]	[in]	Avg Clop	per Soil Lo	ss per Xsection, ft =	-0.007
		Original	Surface Elev	190.263	1 thru	X-Se	ection Spa	icing, ft =	5	Origin	nal Surfac	e Elev	140.230		7 thru 9:	X-	Section Spacing, ft =	5
Tro	nezoidal Analysis	Eroded	Surface Elev	191.611	6:	Test S	Section Le	ngth, ft =	40	Erode	ed Surfac	e Elev	140.762			Tes	t Section Length, ft =	40
na	pozoidal Alialysis	S	oil Gain	1.657	0.124	ę	gauge spa	icing, ft =	1		Soil Gain	1	1.248	0.094			gauge spacing, ft =	0.5
			CSLI	-3.005	-0.225	hannel w	idth meas	ured, ft =	8		CSLI		-1.780	-0.133		channel	width measured, ft =	4

TYPICAL TEST PICTURES 0.5 cfs Flow (RETEST)

Check Structure Installation over Bare Soil

Initial Flow & Upstream Ponding

Increased Ponding & Very Near Overtopping

Close-up of Blowout and End-of-test Upstream Scour Hole

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

	Client:	GSWCC			Product:	Control Runs - No	o Check Structures	5	
	Flow:	0.5 cfs for 3	0 minutes		Test Date:	6/21/2012			
	Station, ft	Avg Soil Gain, in	Avg Soil Loss, in.	Avg Soil Gain, ft ²	Avg Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.07	0.00	-0.022	1.14	6.06	2.31	0.30
	5	0.00	-0.10	0.00	-0.040	0.98	11.83	2.61	0.26
	10	0.00	-0.10	0.00	-0.034	1.06	11.98	2.81	0.28
	15	0.00	-0.17	0.00	-0.065	0.91	11.69	3.03	0.24
	20	0.00	-0.18	0.00	-0.070	1.14	12.13	2.96	0.30
No Check	25	0.00	-0.15	0.00	-0.059	0.98	11.83	3.10	0.26
Structure	30	0.00	-0.18	0.00	-0.068	0.98	11.83	3.15	0.26
	35	0.00	-0.26	0.00	-0.103	1.06	11.98	3.18	0.28
	40	0.00	-0.24	0.00	-0.084	0.94	5.88	3.20	0.25
				Total Soil	Total Soil		Total Wetted	SAI - Soil	CSLI - Clopper
				Gain, ft ³	Loss, ft ³		Area, ft ²	Accretion Index	Soil Loss Index
				0.00	-2.53		95.22	0.00	-2.65

	Flow:	1.0 cfs for 3	0 minutes		Test Date:	6/21/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.28	0.00	-0.110	1.61	6.50	3.78	0.42
	5	0.00	-0.23	0.00	-0.075	1.54	12.86	3.94	0.40
	10	0.00	-0.33	0.00	-0.121	1.50	12.79	4.03	0.39
	15	0.00	-0.25	0.00	-0.085	1.38	12.57	3.99	0.36
	20	0.00	-0.28	0.00	-0.105	1.54	12.86	3.94	0.40
No Check	25	0.00	-0.36	0.00	-0.139	1.54	12.86	3.94	0.40
Structure	30	0.00	-0.28	0.00	-0.097	1.34	12.49	4.08	0.35
	35	0.00	-0.28	0.00	-0.094	1.57	12.93	4.05	0.41
	40	0.00	-0.30	0.00	-0.107	1.50	6.39	4.10	0.39
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				0.00	-4 07		102 27	0.00	-3 98

	Flow:	2.0 cfs for 3	0 minutes		Test Date:	6/27/2012			
	Station, ft	Soil Gain, in	Soil Loss, in.	Soil Gain, ft ²	Soil Loss, ft ²	Flow Depth, in	Wetted Area, ft ²	Flow Velocity, ft/s	Shear, psf
	0	0.00	-0.27	0.00	-0.100	2.20	7.05	4.84	0.57
	5	0.00	-0.43	0.00	-0.171	2.28	14.25	4.80	0.59
	10	0.00	-0.52	0.00	-0.186	2.13	13.96	4.90	0.55
	15	0.00	-0.59	0.00	-0.170	2.13	13.96	5.10	0.55
	20	0.00	-0.44	0.00	-0.145	2.48	14.62	5.05	0.64
No Check	25	0.00	-0.57	0.00	-0.161	2.05	13.81	5.15	0.53
Structure	30	0.00	-0.47	0.00	-0.164	2.20	14.11	5.10	0.57
	35	0.00	-0.56	0.00	-0.194	1.97	13.67	5.10	0.51
	40	0.00	-0.63	0.00	-0.203	2.13	6.98	5.17	0.55
				Total Soil Gain, ft ³	Total Soil Loss, ft ³		Total Wetted Area, ft ²	SAI - Soil Accretion Index	CSLI - Clopper Soil Loss Index
				0.00	-6.79		112.43	0.00	-6.04

CJS 6/30/2012 (Rev. 8/21/14)

Quality Review / Date

Test Setup: Trapezoid with 2-ft wide bottom and 2:1 side slopes x 40-ft long; 5% Bed Slope;

	ASTM D7208 Date: 6/21/12 Start Time: 3:58 PM End Time: 4:28 PM																		
	ASTM	D7206		Soil:	Sandy Cl	lay						Target F	low (cfs):	0.50			Slope:	5%	
60 ft le	ong flume	40 ft te	est section	SRD:	Control			Ins	tallation:	Bare Soi	I								
		2 ft w	vide flume										TEST	DATA					
	5.0			Outlet Weir								Weir						Channel Targets	
	FLO	W		Water Depth, in								1.50						1.00	
eir widt	h (ft) = <u>2</u>		W	ater Velocity, ft/s								0.00						3 - 4	
0 ft	CDEI	FGH		Flow Rate, cfs	0.00		0		-	-	0	0.00	0.00	[ft ²]	finl	N @ 0.04	Vend	0.50	To Motor Out 4
			To origina	Surface Elov ft	1 909	2 0/1	2 202	2 210	2 220	2 206	2 206	2.067	1 921	8.727		V @ 0.20	2 21	v @ 0.80	2 2
	↓ ↓		To erodeo	Surface Elev, it	1.808	2.041	2 3 1 3	2.310	2.320	2.300	2.300	2.007	1.821	8.749		Vava (fps) =	2.31		2.2
			10 0.0000	Soil Gain. ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.030	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	oper Soil Loss, ft	0.000	0.000	-0.020	0.000	-0.016	-0.013	-0.003	0.000	0.000	-0.022	-0.066	Flow (cfs) =	0.00	0.30	0.10
5 ft					А	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.01						
			(Cross-section 2	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	l Surface Elev, ft	1.913	2.175	2.405	2.454	2.493	2.474	2.431	2.208	1.982	9.300			2.61		2.4
			To eroded	Surface Elev, ft	1.913	2.175	2.405	2.484	2.516	2.493	2.431	2.208	1.982	9.340		Vavg (fps) =	2.61	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.024	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	0.000	-0.030	-0.023	-0.020	0.000	0.000	0.000	-0.040	-0.121	Flow (cfs) =	0.00	0.26	0.08
10 ft					A	avg Bottor	n Gain, ft	0.00	-	Avg C	opper So	LOSS, ft	-0.01	[ft ²]	[in]	Venni	V @ ^^.	V@cod	To Water Out /
			To origing	Cross-section 3	A 1 921	2 090	2 200	2.216	2 226	F	G 2.297	H	1 769	8.709	[]	V @ 0.2d	V @ 0.6d	V @ 0.8d	10 Water Surf, It
				I Surface Elev, It	1.031	2.080	2.290	2.310	2.336	2.310	2 303	2.001	1.768	8.743		Vava (fos) -	2.01		2.2
				Sojl Gain ft	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.000	0,000	0.000	0.000	nava =	0.023	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	oper Soil Loss, ft	0.000	0.000	-0.033	-0.026	0.000	0.000	-0.016	0.000	0.000	-0.034	-0.102	Flow (cfs) =	0.00	0.28	0.09
15 ft					A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.01						
			(Cross-section 4	А	в	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	l Surface Elev, ft	2.051	2.320	2.533	2.536	2.559	2.549	2.480	2.234	1.985	9.623			3.03		2.5
			To eroded	I Surface Elev, ft	2.051	2.320	2.556	2.559	2.579	2.589	2.507	2.234	1.985	9.687		Vavg (fps) =	3.03	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.023	-0.023	-0.020	-0.039	-0.026	0.000	0.000	-0.065	-0.194	Flow (cfs) =	0.00	0.24	0.08
20 ft					A	Avg Bottor	n Gain, ft	0.00	_	Avg C	lopper So	il Loss, ft	-0.01	r#21	[in]				
			To origing	Cross-section 5	A 1.972	B 150	2.216	2 210	2 226	2 206	G	H	1 799	8.778	[]	V @ 0.2d	V @ 0.6d	V @ 0.8d	10 Water Surf, It
			To erodec	I Surface Elev, It	1.873	2.152	2.310	2.310	2.320	2.306	2.283	2.021	1.788	8.848		Vava (fos) -	2.96		2.2
			10 010000	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg (1p3) =	0.023	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	oper Soil Loss, ft	0.000	0.000	-0.026	-0.020	-0.003	-0.052	-0.036	0.000	0.000	-0.070	-0.210	Flow (cfs) =	0.00	0.30	0.10
25 ft					А	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.02						
			(Cross-section 6	А	в	с	D	Е	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	l Surface Elev, ft	1.949	2.188	2.438	2.490	2.523	2.513	2.520	2.287	2.073	9.483			3.1		2.4
			To eroded	Surface Elev, ft	1.949	2.188	2.467	2.536	2.526	2.530	2.539	2.287	2.073	9.542	0.000	Vavg (fps) =	3.10	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.030	-0.046	-0.003	-0.016	-0.020	0.000	0.000	-0.059	-0.177	Flow (cfs) =	0.51	0.26	0.08
30 ft				Cross-soction 7	A	Ng Bottor	n Gain, ft	0.00	-	Avg C	opper So	ILOSS, IT	-0.01	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
			To origina	Surface Elev ft	1 706	2 005	2 1 98	2 218	2 208	2 205	2 152	1 893	1 647	8.292		v @ 0.20	3 15	V @ 0.00	2 1
			To eroded	l Surface Elev, ft	1.706	2.005	2.224	2.260	2.224	2.231	2.175	1.893	1.647	8.360		Vavg (fps) =	3.15		2.1
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.026	-0.043	-0.016	-0.026	-0.023	0.000	0.000	-0.068	-0.203	Flow (cfs) =	0.52	0.26	0.08
35 ft					A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.01						
				Cross-section 8	A	В	с	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.896	2.156	2.408	2.454	2.484	2.500	2.438	2.231	1.995	9.319		_	3.18		2.4
			To erodeo	Surface Elev, ft	1.896	2.156	2.434	2.516	2.500	2.552	2.474	2.231	1.995	9.421	0.000	Vavg (fps) =	3.18	Bed Max Shear	
			~	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0,103	-0,308	navg =	0.021	Stress (psf)	Water Depth (ft)
10.4			Clo	pper Soil Loss, ft	0.000	0.000	-0.026	-0.062	-0.016	-0.052	-0.036	0.000	0.000	0.100	0.000	Flow (cts) =	0.56	0.28	0.09
40 IT				Cross-section 9	A	R BUILOR	n Gain, ft	0.00	F	AVg C	opper So	H LOSS, ft	-0.02	[ft ²]	[in]	V @ 0.2d	V @ n ed	V @ 0.8d	To Water Surf ft
			To origina	Surface Elev ft	1 870	2 119	2 365	2 4 2 5	2 408	2 402	2 333	2 106	1 837	9.021		v @ 0.20	32	V @ 0.00	2 4
			To eroded	Surface Elev. ft	1.870	2.119	2.425	2.464	2.434	2.434	2.356	2.106	1.837	9.105		Vavg (fps) =	3.20		
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.019	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.059	-0.039	-0.026	-0.033	-0.023	0.000	0.000	-0.084	-0.253	Flow (cfs) =	0.50	0.25	0.08
					A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.02						
				Avg Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Volu	ime	Avg	Bottom Ga	ain per Xsection, ft =	0.000
			Avg Clo	pper Soil Loss, ft	0.000	0.000	-0.027	-0.029	-0.015	-0.030	-0.020	0.000	0.000	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.006
											Origin	al Surfac	e Elev	367.002			X-	Section Spacing, ft =	5
											Erode	ed Surfac	e Elev	369.530			Tes	t Section Length, ft =	40
											So	il Loss/ G	ain	0.000	0.000		channel	width measured ft -	0.5
												CSLI		-2.528	-0.190		STIGHTING		4

0.5 cfs Flow

Control Channel Prepared

10

20

35

40

Initial Flow

25 30

On-going Flow . . . And Erosion

End-of-test Eroded Condition.

	ASTM 07208	6/21/12	_						S	tart Time:			4:07 PM	End Time:	4:37 PM			
	ASTM D7208		Soil:	Sandy Cl	ay						Target F	low (cfs):			1.00	Slope:	5%	
60 ft I	ong flume 40 ft te	est section	RECP:	Control			An	chorage:	Bare Soil									
	2 ft w	ide flume										TEST	DATA					
_		_	Outlet Weir								Weir						Channel Targets	
	FLOW		Water Depth, in								2.25						1.50	
eir widt	h (ft) = 2	W	ater Velocity, ft/s								0.00						4 - 5	
0 ft	CDEFGH		Flow Rate, cfs	0.00			_			_	0.00	0.00	re-22	P.4			1.00	
		(Cross-section 1	A	В	С	D	E	F	G	н	I	[ft ⁻]	lini	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	↓ ↓	To origina	I Surface Elev, ft	1.873	2.093	2.310	2.333	2.346	2.352	2.339	2.119	1.880	8 999			3.78		2.3
		l o erodeo	Surface Elev, ft	1.873	2.093	2.310	2.388	2.398	2.415	2.382	2.119	1.880	0.000	0.000	Vavg (tps) =	3.78	Bed Max Shear	
		01	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.110	-0.331	navg =	0.023	Stress (pst)	vvater Deptn (tt)
5 ft	Stra	w Bales	pper Soli Loss, rt	0.000	Va Bottor	n Gain ft	-0.056	-0.052	-0.062 Avg C	lonner Sc	illoss ft	-0.02			Flow (crs) =	1.00	0.42	0.13
0.0	bill	<u>Duics</u>	Cross-section 2	Α,	B	C.	D.00	F	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev. ft	2.244	2.474	2.651	2.680	2.661	2.654	2.549	2.320	2.073	10.092			3.94		2.6
		To erodec	Surface Elev, ft	2.244	2.474	2.684	2.707	2.707	2.684	2.585	2.320	2.073	10.167		Vavg (fps) =	3.94		
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.033	-0.026	-0.046	-0.030	-0.036	0.000	0.000	-0.075	-0.226	Flow (cfs) =	1.00	0.40	0.13
10 ft				A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.02						
		(Cross-section 3	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.847	2.133	2.303	2.339	2.362	2.359	2.362	2.133	1.867	8.937			4.03		2.3
		To erodeo	I Surface Elev, ft	1.847	2.133	2.326	2.408	2.415	2.405	2.421	2.133	1.867	9.058		Vavg (fps) =	4.03	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.023	-0.069	-0.052	-0.046	-0.059	0.000	0.000	-0.121	-0.364	Flow (cfs) =	1.00	0.39	0.12
15 ft				F	Avg Bottor	n Gain, ft	0.00	-	Avg C	lopper So	I Loss, ft	-0.03	[# ²]	finl			Veasi	T. 111
		(Cross-section 4	A	B 0.000	0.400	0.540	E	F	G	H	1 000	9.546	[]	V @ 0.2d	V @ 0.6d	V @ 0.8d	10 Water Surf, ft
		To orodoo	I Surface Elev, it	2.041	2.303	2.480	2.516	2.520	2.510	2.477	2.238	1.988	9.631		Vava (foc) -	3.99		2.4
		TO Eloueu	Soil Gain ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg (ips) =	0.020	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clo	oper Soil Loss, ft	0.000	0.000	-0.072	-0.039	-0.023	-0.026	-0.030	0.000	0.000	-0.085	-0.256	Flow (cfs) =	1.00	0.36	0.11
20 ft				A	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.02						
		(Cross-section 5	А	в	с	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.621	1.880	2.139	2.208	2.238	2.228	2.221	2.064	1.867	8.367			3.94		2.1
		To eroded	l Surface Elev, ft	1.621	1.880	2.201	2.267	2.270	2.270	2.238	2.064	1.867	8.472		Vavg (fps) =	3.94	Rod Max Shoar	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.062	-0.059	-0.033	-0.043	-0.016	0.000	0.000	-0.105	-0.315	Flow (cfs) =	1.00	0.40	0.13
25 ft				A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	oil Loss, ft	-0.02	2					
		(Cross-section 6	A	В	С	D	E	F	G	Н	I	[ft*]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.696	1.949	2.182	2.306	2.326	2.336	2.333	2.188	1.949	8.880			3.94		2.3
		To erodeo	I Surface Elev, ft	1.696	1.949	2.218	2.405	2.392	2.382	2.359	2.188	1.949	0.000	0.000	Vavg (fps) =	3.94	Bed Max Shear	
		Clas	Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.139	-0.417	navg =	0.021	Stress (pst)	vvater Deptn (tt)
30 ft		City	pper 30ii 2035, it	0.000	Ava Bottor	n Gain ft	0.00	-0.000	Ava C	lopper Sc	illoss ft	-0.03			1100 (013) =	1.01	0.40	0.13
00 11			Cross-section 7	A	B	C	D	Е	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
		To origina	I Surface Elev, ft	1.752	1.995	2.251	2.290	2.310	2.293	2.303	2.126	1.873	8.695			4.08		2.2
		To eroded	l Surface Elev, ft	1.752	1.995	2.283	2.336	2.336	2.333	2.365	2.126	1.873	8.792		Vavg (fps) =	4.08	Ded to Ci	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.019	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.033	-0.046	-0.026	-0.039	-0.062	0.000	0.000	-0.097	-0.292	Flow (cfs) =	0.91	0.35	0.11
35 ft				F	Avg Bottor	n Gain, ft	0.00		Avg C	lopper So	il Loss, ft	-0.02						
		(Cross-section 8	А	В	С	D	E	F	G	н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
		To origina	I Surface Elev, ft	1.808	2.060	2.323	2.385	2.411	2.405	2.375	2.188	1.926	9.018			4.05		2.3
		To erodeo	I Surface Elev, ft	1.808	2.060	2.375	2.405	2.467	2.454	2.411	2.188	1.926	9.112	0.000	Vavg (fps) =	4.05	Bed Max Shear	
			Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
		Clop	pper Soil Loss, ft	0.000	0.000	-0.052	-0.020	-0.056	-0.049	-0.036	0.000	0.000	-0.094	-0.202	Flow (cfs) =	1.06	0.41	0.13
40 ft		CJ <u>S 6/3</u>	0/2012	A	Avg Bottor	n Gain, ft	0.00	-	Avg C	lopper Sc	il Loss, ft	-0.02	[ft ²]	finl			Veasi	T. 111
		(Cross-section 9	A	В	0.440	0.074	E	F	G	H	1 044	8.564	[]	V @ 0.2d	V @ 0.6d	V @ 0.8d	10 Water Surf, ft
		Surface Elev, ft	1 602	1.903	2.142	2.214	2.290	2.290	2.313	2.123	1.844	8.671		Vavo (foc)	4.1		2.2	
		TO Eloueu	Soil Gain ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg (ips) =	0.020	Bed Max Shear Stress (psf)	Water Depth (ft)
		Clor	pper Soil Loss. ft	0.000	0.000	-0.033	-0.062	-0.066	-0.036	-0.026	0.000	0.000	-0.107	-0.322	Flow (cfs) =	1.02	0.39	0.12
				A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.02						
			Avg Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Volu	ime	Avg	Bottom Ga	ain per Xsection, ft =	0.000
		Avg Clop	pper Soil Loss, ft	0.000	0.000	-0.039	-0.047	-0.047	-0.042	-0.035	0.000	0.000	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.024
										Origir	nal Surfac	e Elev	365.061	1		X-	Section Spacing, ft =	5
										Erode	ed Surfac	e Elev	369.127			Tes	t Section Length, ft =	40
										Sc	oil Loss/ G	iain	0.000	0.000			gauge spacing, ft =	0.5
											CSLI		-4.066	-0.305		channel	width measured, ft =	4

Control Channel Prepared

Initial Flow & Inlet Weir

On-going Flow . . . And Erosion

End-of-test Eroded Condition.

		Date:	6/27/12							S	tart Time:			2:29 PM	End Time:	2:59 PM			
A31m D1200		Soil: Sandy Clay							Target F	low (cfs):			2.00 Slope: 5%						
60 ft long flume 40 ft test section RECP: Control Anchorage: Bare Soil																			
2 ft wide flume													TEST	DATA					
				Outlet Weir								Weir						Channel Targets	
	FLO\	N		Water Depth, in								2.50						1.75	
eir widt	h (ft) = <u>2</u>		W	ater Velocity, ft/s								0.00						5.5 - 6	
0 ft	CDEF	GН		Flow Rate, cfs	0.00							0.00	0.00					2.00	
			(Cross-section 1	A	В	С	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
	L L		To origina	I Surface Elev, ft	1.814	2.047	2.303	2.329	2.339	2.346	2.320	2.116	1.870	8.827			4.84		2.2
			To erodeo	Surface Elev, ft	1.814	2.047	2.343	2.382	2.365	2.392	2.356	2.116	1.870	8.927	0.000	Vavg (fps) =	4.84	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.100	-0.200	navg =	0.022	Stress (psf)	Water Depth (ft)
F 4	Clo		pper Soil Loss, ft	0.000	0.000	-0.039	-0.052	-0.026	-0.046	-0.036	0.000	0.000	0.100	0.200	Flow (cts) =	2.00	0.57	0.18	
511				Cross-soction 2			n Gain, it	0.00	-	- Avg C	iopper Sc		-0.02	[ft ²]	[in]	V @ 0.2d	V @ 0.64	V @ 0.8d	To Water Surf. ft
			To origina	Surface Elev ft	1 923	2 126	2 402	2 4 4 1	2.461	2 441	2 4 1 1	2 188	1 972	9.204		v @ 0.2u	4.8	V @ 0.84	2 3
			To erodec	Surface Elev. ft	1.923	2.120	2.418	2.539	2.497	2.533	2.490	2.188	1.972	9.375		Vavg (fps) =	4.80		2.0
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.023	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	oper Soil Loss, ft	0.000	0.000	-0.016	-0.098	-0.036	-0.092	-0.079	0.000	0.000	-0.171	-0.512	Flow (cfs) =	2.00	0.59	0.19
10 ft					A	vg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.04						
			(Cross-section 3	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	l Surface Elev, ft	1.745	1.972	2.211	2.270	2.306	2.267	2.238	2.008	1.814	8.523			4.9		2.2
			To eroded	Surface Elev, ft	1.749	1.972	2.283	2.395	2.336	2.310	2.359	2.008	1.814	8.710		Vavg (fps) =	4.90	Bed Max Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	-0.003	0.000	-0.072	-0.125	-0.030	-0.043	-0.121	0.000	0.000	-0.186	-0.559	Flow (cfs) =	1.74	0.55	0.18
15 ft			·		A	Vg Bottor	m Gain, ft	0.00	_	Avg C	lopper Sc	oil Loss, ft	-0.04	[ft ²]	[in]				_
			(Cross-section 4	A	B	C	D	E	F	G	H	1	9.635	լույ	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	2.018	2.274	2.493	2.549	2.572	2.536	2.520	2.287	2.037	9.804			5.1		2.4
			TO eloded	Soil Gain ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg (ips) =	0.021	Bed Max Shear Stress (psf)	Water Depth (ft)
			Clo	oper Soil Loss. ft	0.000	0.000	-0.220	-0.030	-0.023	-0.039	-0.128	0.000	0.000	-0.170	-0.509	Flow (cfs) =	1.81	0.55	0.18
20 ft				,	A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	oil Loss, ft	-0.05						
				Cross-section 5	А	В	С	D	Е	F	G	н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.781	2.051	2.228	2.254	2.277	2.274	2.238	2.021	1.788	8.575			5.05		2.1
			To eroded	l Surface Elev, ft	1.788	2.051	2.320	2.316	2.323	2.323	2.310	2.021	1.788	8.720		Vavg (fps) =	5.05	Red May Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.023	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	-0.007	0.000	-0.092	-0.062	-0.046	-0.049	-0.072	0.000	0.000	-0.145	-0.436	Flow (cfs) =	2.09	0.64	0.21
25 ft					A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	il Loss, ft	-0.04	ra 2	P -1				
			(Cross-section 6	A	В	С	D	E	F	G	Н	I	[ft]	lini	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.909	2.169	2.421	2.487	2.510	2.513	2.474	2.290	2.057	9.596			5.15		2.4
			To eroded	Soil Coin ft	0.000	2.169	2.536	2.523	2.559	2.530	2.687	2.290	2.057	0.000	0.000	vavg (rps) =	0.020	Bed Max Shear	Wator Dopth (ft)
			Clo	oner Soil Loss ft	0.000	0.000	-0.115	-0.036	-0.049	-0.016	-0.213	0.000	0.000	-0.161	-0.482	Flow (cfs) =	1.76	0.53	0.17
30 ft				,	A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	oil Loss, ft	-0.05						
				Cross-section 7	А	В	с	D	E	F	G	Н	I	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.617	1.896	2.126	2.175	2.195	2.192	2.149	1.959	1.690	8.189			5.1		2.1
			To eroded	l Surface Elev, ft	1.624	1.896	2.195	2.264	2.241	2.247	2.234	1.959	1.690	8.353		Vavg (fps) =	5.10	Bed May Shear	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.021	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	-0.007	0.000	-0.069	-0.089	-0.046	-0.056	-0.085	0.000	0.000	-0.164	-0.492	Flow (cfs) =	1.87	0.57	0.18
35 ft					A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	oil Loss, ft	-0.04	10.2	[1.]				
			(Cross-section 8	A	В	С	D	E	F	G	Н	1	[ft"]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf, ft
			To origina	I Surface Elev, ft	1.795	2.031	2.303	2.359	2.402	2.415	2.392	2.234	2.011	9,219			5.1		2.3
			I o erodeo	Surface Elev, ft	1.791	2.031	2.402	2.451	2.493	2.480	2.467	2.234	2.011	0.001	0.002	vavg (fps) =	5.10	Bed Max Shear	Motor Death (//)
			0~	Sui Gain, ft	0.003	0.000	-0.000	-0.000	-0.000	0.000	-0.075	0.000	0.000	-0.194	-0.581	Flow (cfc)	1.67	O 51	0.16
40 ft			C.IS 6/3	0/2012	0.000	va Bottor	m Gain ft	0.002	-0.032	Ava C	lopper Sc	nilloss ft	-0.05			110W (013) =	1.07	0.51	0.10
.5 10			-0 <u>0 0/0</u>	Cross-section 9	A	B	C	D	Е	F	G	Н	1	[ft ²]	[in]	V @ 0.2d	V @ 0.6d	V @ 0.8d	To Water Surf. ft
			To origina	I Surface Elev, ft	1.827	2.080	2.310	2.359	2.385	2.352	2.320	2.083	1.824	8.863			5.17		2.3
			To eroded	Surface Elev, ft	1.827	2.080	2.457	2.474	2.467	2.375	2.425	2.083	1.824	9.067		Vavg (fps) =	5.17	Red Mar Cl	
				Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	navg =	0.020	Stress (psf)	Water Depth (ft)
			Clo	pper Soil Loss, ft	0.000	0.000	-0.148	-0.115	-0.082	-0.023	-0.105	0.000	0.000	-0.203	-0.610	Flow (cfs) =	1.83	0.55	0.18
L					A	Avg Bottor	m Gain, ft	0.00		Avg C	lopper Sc	oil Loss, ft	-0.05						
				Avg Soil Gain, ft	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Volu	ime	Avg	Bottom Ga	ain per Xsection, ft =	0.000
L			Avg Clo	pper Soil Loss, ft	-0.001	0.000	-0.098	-0.082	-0.048	-0.051	-0.088	0.000	0.000	[ft ³]	[in]	Avg Clop	oper Soil Lo	ss per Xsection, ft =	-0.022
											Origir	nal Surfac	e Elev	362.440			X-	Section Spacing, ft =	5
											Erode	ed Surface	e Elev	369.224			Tes	t Section Length, ft =	40
											So	of Loss/ G	ain	0.004	0.000		channel	width measured # -	0.5
												CSLI		-6.788	-0.509		STICH II ICI		4

Control Channel Prepared

Initial Flow & Closeup

On-going Flow . . . And Erosion

End-of-test Eroded Condition.

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX C – SEDIMENT BARRIER TEST PROCEDURE

	Page 1 of 7	Document Number: 30SOP-GSWCC-SB, Rev 0				
TRI/ENVIRONMENTAL		Effective Date: Sept 1, 2012				

Date:

Approved:_____ Sam R. Allen, Vice President

Standard Test Method for Determination of Sediment Retention Devices (SRDs) Performance in Reducing Sediment Loss from Rainfall-Induced Erosion during Perimeter Control Applications

DDRF Division

Title	Large-scale Slope Sediment Retention
Test Method Reference	GSWCC-SB / WK11340
Test Category	Hydraulic Performance
Material Applicability	Sediment Retention Devices (a.k.a. SRDs)
Target Property	Soil Loss / Seepage
Units of Test Result	Practice Factor (as used in the Universal Soil Loss Equation)
Test Specimen Configuration	8 feet wide
Number of Replicate Specimens	Three (one each on three different slopes)
Equipment Required	Rainfall simulators, water source, runoff and sediment collection system, other miscellaneous equipment including: rain gauges, sieve set (standard US sieves), drying cans, a drying oven or microwave oven, balances, meteorological equipment (wind speed, temperature, precipitation), sample bottles, and camera and video recorder.

1.0 PURPOSE

1.1 This test method covers the determination of a practice factor (a.k.a. "P-Factor") for a sediment retention device.

2.0 SCOPE

- 2.1 This test method is a performance test, but can be used for quality assurance to determine product conformance to project specifications. Caution is advised since information regarding laboratory specific precision is incomplete. For project specific conformance, unique project-specific conditions may be taken into consideration.
- 2.2 This test method covers the guidelines, requirements and procedures for evaluating the ability of Sediment Retention Devices (SRDs) to retain sediments resulting from rainfall-induced erosion.
- 2.3 This test method utilizes full-scale testing procedures, and is patterned after conditions typically found on construction sites prior to revegetation work. Further, procedures for evaluation of baseline conditions are provided. Thus, test preparation, test execution, data collection, data analysis and reporting procedures herein are intended to be suitable for testing of bare soil and SRDs.
- 2.4 One control plot (bare soil) shall be tested either before or after the product testing. All testing shall follow identical procedures. The control plot results are combined with previous control runs to characterize control plot performance and to obtain an associated "K-Factor" for use in P-Factor computations.
| | Page 2 of 7 | Document Number:
30SOP-GSWCC-SB, Rev 0 |
|-------------------|-------------|---|
| TRI/ENVIRONMENTAL | | Effective Date: Sept 1, 2012 |

3.0 **RESPONSIBILITIES**

- 3.1 The Corporate Quality Officer in conjunction with the laboratory director is responsible for the implementation and maintenance of the standard operating procedure.
- 3.2 The Laboratory Director/Assistant Laboratory Director is responsible for informing the technicians of the maintenance and operation requirements for specific equipment and provides training to technicians.
- 3.3 The Technicians are responsible for performing apparatus/facility setup, conducting the test, performing the required equipment preventive maintenance and documenting the results.

4.0 SAFETY

4.1 Take care when performing preparation and testing operations on the slope.

5.0 APPARATUS / FACILITY

- 5.1 Testing is performed on three earthen embankment test plots having a surface slope of 3H:1V and a slope length of 40 ft, though the actual exposed surface upstream of the SRD is 27 ft. The test plot width is 8 ft.
- 5.2 The test plot shall be constructed with a minimum 12-inch thick veneer of compacted soil of the type requested for testing. The default soil type is sandy clay as defined by the USDA soil triangle. Representative samples of the test soil shall be sent to a geotechnical laboratory at least once per year, or whenever the stockpile is changed, for determination of grain size distribution, Atterberg limits, organic matter content, standard Proctor density, and optimum moisture content.
- 5.3 The test plot soil is compacted to create a geotechnically (structurally) stable subgrade. Place soil in a minimum of two lifts and compact to 90 ± 3 % of standard Proctor density in accordance with Test Method D 698. In-situ density shall be verified via any generally accepted method, such as ASTM D 2937 (drive cylinder method).
- 5.4 Test plots are separated sufficiently to prevent work activities and overspray from one plot from impacting adjacent plots. The top and side edges of each plot are constructed with edging sufficient to prevent run-on of water from outside the plot.
- 5.5 The test plots are encircled by sprinkler risers around the perimeter of the test plot to provide uniform distribution of the rainfall intensities to be used in testing. The sprinkler risers and locations shall be established based on the calibration procedures set forth in Section 7.0. The sprinkler risers are supplied and connected by a piping system capable of providing consistent water supply to maintain the calibrated performance.

6.0 PROCEDURE

- 6.1 Test Plot Preparation:
 - 6.1.1 Repair depressions, voids, soft, or uncompacted areas.
 - 6.1.2 Also, free the plot from obstructions or protrusions, such as roots, large stones, or other foreign material.

- 6.1.3 If the plots have been used for previous test series, discard the soil carried off the plot and obliterate any rills and gullies. Spread new soil of the same type across the plot and blend (rake or till) into the surface.
- 6.1.4 Loosen the soil veneer to a depth of approximately 10 cm (4 in.) using a tiller or other appropriate tool.
- 6.1.5 Determine the moisture content of the soil on each test plot.
- 6.1.6 Wet or dry each plot until the soil reaches the optimum moisture content $\pm 4\%$.
- 6.1.7 Rake the tilled plot smooth with a steel hand rake.
- 6.1.8 Lightly compact the soil surface using a turf roller.
- 6.2 Test Set-Up
 - 6.2.1 Control (Bare Soil) Testing Proceed to 6.2.4
 - 6.2.2 Product Testing
 - 6.2.2.1 Install the SRD at the base of the plot as directed by the client after the test plot has been prepared.
 - 6.2.2.2 Permit no foot traffic on the plot, once the SRD has been installed.
 - 6.2.2.3 Document the installation methodology for the SRD.
 - 6.2.2.4 Install the SRD so that no runoff is allowed to run around the ends of the SRD.
 - 6.2.3 Take soil samples from each test plot to determine the pretest soil moisture content within 1 hour prior to the test. Generally, 3 samples are taken from each test plot at the horizontal quarter points.
 - 6.2.4 Place rain gauges on each test plot to document actual rainfall amount. Generally, 6 gauges are used on each test plot and positioned in pairs, each 2 ft from the plot edge, at the horizontal quarter points.
 - 6.2.5 Take photographs of the plot prior to testing.
- 6.3 Pre-Test Documentation:
 - 6.3.1 Maintain a digital test folder for each test, including the following information:
 - 6.3.1.1 Calibrated rainfall properties.
 - 6.3.1.2 Calibrated test soil properties, including soil classification; standard proctor moisture-density relationship; "K" factor; gradation (including hydrometer test for the P200 fraction); and Atterberg limits.
 - 6.3.1.3 Data from the on-site weather station at the time of the test, including ambient air temperature, wind speed, and precipitation.
 - 6.3.1.4 Product manufacturer; product name; description; specifications; size; and a picture of the material, if practical.
 - 6.3.1.5 Test data, including soil moisture condition, all measurements made during testing, and pictures and videos of the test.

6.3.2 When product testing, obtain a sufficient size sample of the product to be tested and submit the sample for the index tests shown in the following table:

SRD – Silt Fence	SRD – RECP	SRD - Wattle
Mass/Area	Mass/Area	Mass/Volume
Thickness	Thickness	Circumference / Perimeter
Tensile Strength	Ground Cover	
Permittivity	Tensile Strength	
Apparent Opening Size	Absorption (temporary)	
Percent Open Area	Specific Gravity (permanent)	

6.4 **Test Operation and Data Collection:**

- 6.4.1 Include the following test data:
 - 6.4.1.1 operator identification;
 - 6.4.1.2 operating pressure;
 - 6.4.1.3 sprinkler heads activated;
 - 6.4.1.4 time rainfall began;
 - 6.4.1.5 time stopped;
 - 6.4.1.6 time runoff stopped, and;
 - 6.4.1.7 volume (timed) readings taken at 1 minute intervals;
 - 6.4.1.8 sediment concentrations taken at 3 minute intervals.
- 6.4.2 Perform testing at sequential target intensities of 5.1, 10.2, 15.2 cm/hr (2, 4, 6 in/hr) for 20 min.
- 6.4.3 During each target intensity, collect all runoff. Take timed volume samples at 1 minute intervals and grab samples at 3 minute intervals to determine runoff rate and sediment concentration, respectively. Commence sampling when runoff starts and continue until runoff stops (or becomes minimal). Take timed volume samples from the plot apron in appropriately sized containers. Take grab samples from the plot apron in 250 mL laboratory sample bottles and analyze for suspended sediment.
- 6.4.4 When the test is stopped at the end of each intensity (20 minutes of catastrophic failure) measure and record the depth of rainfall collected in each rain gauge.
- 6.4.5 Determine total sediment from the plot tested by allowing settlement to occur in the runoff collection tanks. Allow a minimum of 12 hours for settlement or use a flocculating agent. Decant and discard excess water, making sure that the sediment in the bottom of the tank is not disturbed. Collect the entire amount of the settled sediment.
- 6.4.6 Repeat 6.4.1 thru 6.4.5 for two additional slopes when testing a product.
- 6.4.7 Dry, weigh, and record the dry sediment weight.
- 6.4.8 Record general observations regarding the condition of the tested SRD at the conclusion of the data collection. Take photographs of the test plot after testing has been completed.
- 6.4.9 Carefully remove the SRD from the plot with as little disturbance of the soil as possible. Note general observations regarding the condition and erosion patterns (rills, etc.). Take photographs to record the condition of the soil.

6.5 Test Data:

- 6.5.1 Tabulate runoff data showing discharge as a function of time.
- 6.5.2 Tabulate sediment concentration as a function of time.
- 6.5.3 From the total sediment yield and available control data, compute the cummulative practice factor (P-Factor), comparing soil loss from the protected condition to that of the bare soil condition.

6.6 Report

Report at a minimum the following information:

- 6.6.1 General information, including test facility location, date, time and operator(s),
- 6.6.2 Test plot preparation,
- 6.6.3 Calibration data and analysis,
- 6.6.4 Materials documentation including SRD material and installation description,
- 6.6.5 Test operation, data collected, and data analysis.
- 6.6.6 Cumulative results of associated control (bare soil) testing.

7.0 Calibration and Associated Calculations

- 7.1 Simulated Rainfall Calibration
 - 7.1.1 Calibration of the rainfall simulation equipment includes establishing: Rainfall intensity; Uniformity of rainfall application across the plot; Drop size distribution for each intensity, and; Rainfall drop height.
 - 7.1.2 To ensure uniform distribution, do not conduct calibration and testing when the wind velocity is greater than 8 km/h (3 mph).
 - 7.1.3 Conduct calibration annually or following equipment maintenance work. Conduct one intensity/uniformity check every 90 days, or after no more than four test series, whichever comes first.
 - 7.1.4 Place sprinkler risers around the perimeter of the test plot to provide uniform distribution. The precise location of the risers to provide uniform rainfall distribution will be determined by the calibration process and the nuances of any given simulator system.
 - 7.1.5 To measure rainfall intensity and uniformity, calibration tests shall be fun for 15 minutes, recorded to the nearest second. The data shall be used to calculate the rainfall intensity uniformity using the Christiansen uniformity coefficient. Uniformity calibration shall be based on 14 rain gauges positioned equi-distant from each other across and down the slope. Thus, they are located 2 ft from the closest edge and 4 ft from each other. Perform calibrations at uniform pressure for each intensity. Adjust valve and pressure settings until an acceptably uniform rainfall distribution pattern is achieved.

- 7.1.6 To measure drop size distribution, completely fill three labeled pie pans with sifted flour, struck off with a ruler to produce a smooth, uncompacted surface.
 - 7.1.6.1 Identify three locations along the vertical centerline of the test plot, and at the horizontal quarter points.
 - 7.1.6.2 Extend the covered, filled pie pans out into the rainfall at the identified locations.
 - 7.1.6.3 At the desired test intensity, remove the cover briefly so that drops impinge on the flour to form pellets.
 - 7.1.6.4 Re-cover the pans after only a few seconds and before the drops start to touch each other, and remove the pans from the rainfall.
 - 7.1.6.5 Repeat this procedure at each desired intensity.
 - 7.1.6.6 Air-dry the flour pellets for a minimum of 12 h. Screen each sample of these semi-dry pellets by emptying the entire contents of the pan onto a 70 mesh sieve to carefully remove as much loose flour as possible. Then transfer the remaining pellets to evaporating dishes and heat in an oven at approximately 43°C (110°F) for 2 h.
 - 7.1.6.7 Record the total weight of the hard flour pellets.
 - 7.1.6.8 Sieve the pellets through standard soil sieves by shaking for 2 min.
 - 7.1.6.9 Cull foreign matter and any double pellets from each sieve and record the total weight and pellet count for each size.
 - 7.1.6.10 Raindrop sizes shall be shown to include no more than 10% greater than 6mm (0.24 in) and no more than 10% less than 1mm (0.04 in).
 - 7.1.6.11 Repeat the raindrop size calibration procedure three times for each desired intensity.
- 7.1.7 Determine raindrop fall height by measuring the average height of the raindrop trajectory using a surveyor's rod. Hold the rod vertically in the spray of a single riser and measure the wetted height. Repeat the height measurement for each desired intensity.

7.2 Calibration Data:

- 7.2.1 Calculate the Christiansen uniformity coefficient (Cu) using the network of rain gauges described in 7.1.5, each of which represents an equal area of the test plot. Calculate the Cu as follows:
 - 7.2.1.1 where:Cu = Christiansen uniformity coefficient,

 $C_u = 100 [1.00 - \sum |d| \div n \bar{X}]$

where:

 C_u = Christiansen uniformity coefficient,

 $d = X_i - \bar{X},$

- n = number of observations (20 in this case),
- X = average depth caught, and
- X_i = depth caught in each rain gauge, *i*.

7.2.2 The average rainfall intensity over the entire test plot is the average depth of rainfall collected in the rain gauges divided by the elapsed time of the test. The formula to calculate intensity (in centimeters per hour) is:

$$i = 60\left[\sum_{j=1}^{J} P_j \div Jt\right]$$

- i = rainfall intensity (cm / h),
- P_j = depth of rainfall (cm),
- J' = number of rain gauges (20 in this case), and
- t = time of test (minutes).
- 7.2.3 Plot the raindrop size distribution for each rainfall intensity. The plot should relate the percent of total volume to drop diameter.

8.0 TRAINING

8.1 The Laboratory Director and Assistant Laboratory Director in conjunction with Division Management are responsible for providing initial and ongoing training. This SOP and all associated SOPs are included in the department training program of all department new hires that perform any part of this SOP's activities and as continued training for existing personnel.

9.0 REFERENCES

- 9.1 ISO 9001, Quality Management System Requirements
- 9.2 ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories
- 9.3 01CQSP, Corporate Quality System Plan
- 9.4 ASTM WK11340 (February 2012)
- 9.5 ASTM D 698
- 9.6 ASTM D 2937

10.0 CHANGES TO PROCEDURE

Each change shall be documented.

Changes	Date	Revision Level
New	9/01/12	0

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX D – CHECK DAM TEST PROCEDURE

	Page 1 of 6 Document Numb 30SOP-GSWO Effective Date: S	Document Number: 30SOP-GSWCC_CD, Rev 0
TRI/Environmental		Effective Date: Sept.1, 2012

Approved:	_ Date:	Approved:	Date:
Sam R. Allen, Vice President		Alfred J. Ransom,	Corporate Quality Officer

Standard Test Method for Determination of Temporary Ditch Check Performance in Protecting Earthen Channels from Stormwater-Induced Erosion

DDRF Division

Title	Large-scale Channel Erosion
Test Method Reference	GSWCC-CD / ASTM D 7208-06
Test Category	Hydraulic Performance
Material Applicability	Sediment Retention Devices (a.k.a. SRDs)
Target Property	Soil Loss
Units of Test Result	Soil Loss
Test Specimen Configuration	Minimum 12 ft long to fit across trapezoidal channel having
	0.61 m (2 ft) bottom width and 2:1 side slopes.
Number of Replicate Specimens	Three (one each in three different flumes)
Equipment Required	Water delivery system, water source, survey apparatus,
	velocity probe, earthwork equipment, photographic
	equipment: camera and video recorder.

1.0 PURPOSE

1.1 This test method covers the determination of a check structure performance via its ability to slow runoff, trap sediments, and decrease erosion.

2.0 SCOPE

- 2.1 This test method is a performance test, but can be used for quality assurance to determine product conformance to project specifications. Caution is advised since information regarding laboratory specific precision is incomplete. For project specific conformance, unique project-specific conditions may be taken into consideration.
- 2.2 This test method covers the guidelines, requirements, and procedures for evaluating the ability of temporary ditch checks to protect earthen channels from stormwater-induced erosion. Critical elements of this protection are the ability of the temporary ditch check to:
 - 2.2.1 Slow and/or pond runoff to encourage sedimentation, thereby reducing soil particle transport downstream;
 - 2.2.2 Trap soil particles upstream of the check structure; and
 - 2.2.3 Decrease soil erosion.
- 2.3 This test method utilizes full-scale testing procedures, and is patterned after conditions typically found on construction sites at the conclusion of earthwork operations, but prior to the start of revegetation work. Therefore this test method considers only unvegetated conditions. This test method provides a comparative evaluation of a temporary ditch check to baseline bare soil conditions under controlled and documented conditions.

3.0 **RESPONSIBILITIES**

- 3.1 The Corporate Quality Officer in conjunction with the laboratory director is responsible for the implementation and maintenance of the standard operating procedure.
- 3.2 The Laboratory Director/Assistant Laboratory Director is responsible for informing the technicians of the maintenance and operation requirements for specific equipment and provides training to technicians.
- 3.3 The Technicians are responsible for performing apparatus/facility setup, conducting the test, performing the required apparatus preventive maintenance and documenting the results.

4.0 SAFETY

4.1 Take care when performing preparation and testing operations in the channels.

5.0 APPARATUS / FACILITY

- 5.1 Testing is performed in trapezoidal cross section channels. Test channels have an approximate bed slope of 5% and a test channel length of 60 ft. The trapezoidal channel has a 2 ft bottom width and 2:1 side slopes.
- 5.2 The test channel shall be constructed with a minimum 12-inch thick veneer of compacted soil of the type requested for testing. The default soil type is sandy clay as defined by the USDA soil triangle. Representative samples of the test soil shall be sent to a geotechnical laboratory at least once per year, or whenever the stockpile is changed, for determination of grain size distribution, Atterberg limits, organic matter content, standard Proctor density, and optimum moisture content.
- 5.3 The channel bed soil is compacted to create a geotechnically (structurally) stable subgrade. Place soil in a minimum of two lifts and compact to 90 ± 3 % of standard Proctor density in accordance with Test Method D 698. In-situ density shall be verified via any generally accepted method, such as ASTM D2937 (drive cylinder method).

6.0 PROCEDURE

- 6.1 Test Channel Preparation:
 - 6.1.1 Soil preparation methods for bare soil (control) testing should be identical to soil preparation methods for the protected scenario.
 - 6.1.1.1 In the case previous testing was completed in the channel, obliterate any rills and gullies and spread new soil of the same type across the plot and blend (rake or till) into the surface.
 - 6.1.1.2 Determine the moisture content of the soil on each test plot.
 - 6.1.1.3 Wet or dry each plot until the soil reaches the optimum moisture content $\pm 4\%$.
 - 6.1.1.4 Rake the plot smooth with a steel hand rake.
 - 6.1.1.5 Compact the soil surface using a trapezoid form "drag" and/or hand compaction.
 - 6.1.2 Locate a 40 ft test reach sufficiently downstream of the channel inlet structure or transitions of flow to ensure straight and parallel stream lines. Flow should enter test reach as uniform flow, or as close to uniform flow as possible.

	Page 3 of 6	Document Number: 30SOP-GSWCC_CD, Rev 0
TRI/ENVIRONMENTAL		Effective Date: Sept.1, 2012

- 6.1.3 Check Dam Installation Install the check dam in accordance with the client's directions. Locate the check structure (and associated scour apron, if required) at a point in the test reach that will allow any upstream ponding to be contained in the test reach. (Data acquisition cross-sections should be 2.5 ft upstream and downstream of the center of the check dam.)
 - 6.1.3.1 Record all pertinent information.
 - 6.1.3.2 Extend the check dam ends up the channel side slopes to prohibit flow from circumventing the check dam.
- 6.2 Pre-Test Documentation:
 - 6.2.1 Maintain a digital test folder for each test, including the following information:
 - 6.2.1.1 Calibrated flow properties.
 - 6.2.1.2 Calibrated test soil properties, including soil classification; standard proctor moisture-density relationship; "K" factor; gradation (including hydrometer test for the P200 fraction); and Atterberg limits.
 - 6.2.1.3 Product manufacturer; product name; description; specifications; size; and a picture of the material, if practical.
 - 6.2.1.4 Test data, including all measurements made during testing and pictures and videos of the test.
 - 6.2.2 When product testing, obtain a sufficient size sample of the product to be tested and submit the sample for the index tests shown in the following table:

SRD – Silt Fence	SRD - Wattle	SRD - Other
Mass/Area	Mass/Volume	TBD
Thickness	Circumference / Perimeter	TBD
Tensile Strength		
Permittivity		
Apparent Opening Size		
Percent Open Area		

- 6.3 Test Section Preparation:
 - 6.3.1 Test Section Immediately prior to testing, delineate cross sections for data acquisition. At a minimum, nine cross sections should be included through the test reach, with a maximum spacing between sections of 5 ft in the direction of flow. The test section shall be a minimum of 40 ft long.
 - 6.3.2 Establish a sufficient number of uniformly spaced data acquisition locations within each cross section to record water surface elevation and bed elevation both below and above the maximum water level. At a minimum, three data acquisition locations along the bed of the channel and up each side slope must be identified and monitored at each cross section. Record the elevation of each data acquisition location by survey apparatus or point gauge assembly. If using a point gauge assembly in a relative frame of reference, determine the longitudinal slope of the installation by survey apparatus. Elevation readings can be sensitive to the diameter of the probe (rod or point gauge assembly) in contact with the ground surface. Thus, the point gauge assembly or survey rod should include an extension

rod between 6.4 mm (0.25 in.) and 9.5 mm (0.375 in.) in diameter to make contact with the ground surface.

- 6.3.3 Use an upstream hydraulic control structure with a calibrated weir to introduce volumetric flows to the channel. Three increasing flows one per channel will be used in the testing. The test flow rates shall be 0.5, 1.0, and 2.0 cfs.
- 6.4 Prepare facility for testing.
 - 6.4.1 Provide access to each data acquisition cross section to permit measurement of bed and water surface elevations by means of survey apparatus or point gauge assembly without walking on channel surface. Record elevation of each data acquisition location to establish the baseline elevations.
- 6.5 Test Operation and Data Collection:
 - 6.5.1 Record the following information and test data:
 - 6.5.1.1 operator identification;
 - 6.5.1.2 baseline channel elevations;
 - 6.5.1.3 actual discharge recorded during testing, time flow began;
 - 6.5.1.4 time flow stopped;
 - 6.5.1.5 flow depths; and measured velocities;
 - 6.5.1.6 final channel elevations.
 - 6.5.2 Slowly increase flow to initial target discharge.
 - 6.5.3 Allow flow to increase over approximately ten minutes to minimize shock to the system.
 - 6.5.4 Once the flow has been increased to the target discharge, allow the flow to reach equilibrium.
 - 6.5.5 Record water surface elevation measurements at each data acquisition location at each cross section using the point gauge assembly or survey apparatus used to record bed elevations.
 - 6.5.6 Record velocity measurements at the centerline point of each test cross section using the velocity probe.
 - 6.5.7 Velocity measurements at approximately the mid-point of depth.
 - 6.5.8 Record photographs and video footage of the testing. Convey flow for thirty minutes at the target discharge or until the check dam becomes dislodged, whichever is shorter.
 - 6.5.9 At the conclusion of the initial target discharge, inspect the test channel noting any changes in SRD or bed soil condition. Record photographs and video footage of the installation. Record elevation of each data acquisition location at the same locations as recorded during initial data collection.
 - 6.5.10 Carefully remove the SRD from the channel, with as little disturbance of the soil as possible. Note general observations regarding the condition and scour patterns. Take photographs to record the condition of the test channel. Markers may be used to identify any scour patterns for the pictorial documentation. Photographs should show the final condition of the test plot with and without the SRD in place.
 - 6.5.11 Setup and run identical channels for each of the higher flows.

6.5.12 A total of three tests (1 each at 0.5, 1.0, and 2.0 cfs) should be performed on each check dam system to obtain a range of performance measurements. Each test should follow identical procedures as noted above.

6.6 Test Data:

- 6.6.1 Tabulate before and after elevations and flow (velocity/depth), as well as flow at weir measurements.
- 6.6.2 From the available data, compute soil loss and associated flow (shear/velocity) characteristics and channel properties as discussed in 7.0.

7.0 Data Analysis

- 7.1 The objective of the analysis of test data is to determine the relationship between volumetric flow (including velocity) and soil loss and to determine the hydraulic conditions created by check dams.
- 7.2 Determine total discharge from weir, inline flow meter, or alternative procedure.
- 7.3 Develop profile plot for each test to include bed surface, water surface and energy grade line.
- 7.4 Bed elevation prior to testing should be plotted in conjunction with the water surface elevation measured during testing.
- 7.5 Flow depth is computed as the vertical difference between water surface and bed surface elevation measurements.
- 7.7 Calculate the Clopper Soil Loss Index (CSLI) from the topographic data gathered before and after test flows. Use the change in channel topography to define the performance of the SRD. Quantify areas of degradation (soil loss) as "cut" and quantify areas of aggradation (sediment deposition) as "fill." Compute CSLI as follows:

$$\begin{split} & \text{CSLI} = (\text{C}_{\text{T}}/\text{A}_{\text{T}}) \text{ x 100} \\ & \underline{\text{Where}}\text{:} \\ & \text{SAI} = \text{Soil Aggradation Index} \\ & \text{C}_{\text{T}} = \text{total cut, m}^3\text{, and} \\ & \text{A}_{\text{T}} = \text{wetted channel area, m}^2 \end{split}$$

7.9 Calculate the Soil Aggradation Index (SAI) from the topographic data gathered before and after test flows. Use the change in channel topography to define the performance of the SRD. Quantify areas of degradation (soil loss) as "cut" and quantify areas of aggradation (sediment deposition) as "fill." Compute SAI as follows:

 $\begin{array}{l} SAI = (F_T/A_T) \; x \; 100 \\ \underline{Where}: \\ SAI = Soil \; Aggradation \; Index \\ F_T = total \; aggradation, \; m^3, \; and \\ A_T = wetted \; channel \; area, \; m^2 \end{array}$

- 8.0 **Report** An engineering report documenting the test facility, test preparation, test execution, collected data, data analysis and results must be generated to include:
 - 8.1 General information, including test facility location, date, and time,

- 8.2 Test channel preparation including geotechnical properties of test soil,
- 8.3 In-situ compaction validation,
- 8.4 Weir calibration data and analysis, if used,
- 8.5 Materials documentation including check dam material and installation details,
- 8.6 Test operation and data collected, and
- 8.7 Data analysis,
- 8.8 Table and/or plot of flow depth, flow velocity, and soil loss.

9.0 TRAINING

9.1 The Laboratory Director and Assistant Laboratory Director in conjunction with Division Management are responsible for providing initial and ongoing training. This SOP and all associated SOPs are included in the department training program of all department new hires that perform any part of this SOP's activities and as continued training for existing personnel.

10.0 REFERENCES

- 10.1 ISO 9001, Quality Management System Requirements
- 10.2 ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories
- 10.3 01CQSP, Corporate Quality System Plan
- 10.4 ASTM D 7208
- 10.5 ASTM D 698
- 10.6 ASTM D 2937

11.0 CHANGES TO PROCEDURE

Each change shall be documented.

Changes	Date	Revision Level
New	9/1/12	0

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX E – RAINFALL CALIBRATION DATA

DDRF Rainfall Calibration

Slope 2 - Target 6 in/hr

Date: <u>13-Apr-12</u>

Start Time: 12:30 PM

End Time: 12:45 PM

Test Time: <u>15</u> min.

(circle "x" for open valves)

TOP OF SLOPE

				P =		psi						
_					Α							
	d =	mm		1	2		d =	mm				Х
	i =	0.00 in/hr		•	2	в	i =	0.00 in/hr	P =		psi	Х
x	d =	mm		3	1		d =	mm				X
X P =psi	i =	0.00 in/hr	С	5	-		i =	0.00 in/hr				х
x	d =	mm		5	6		d =	mm				X
x	i =	0.00 in/hr		5	0	D	i =	0.00 in/hr	P =	9	psi	х
X	d =	35 mm		7	0		d =	35 mm				Х
X P = 9 psi	i =	5.51 in/hr	Е	1	0		i =	5.51 in/hr				х
x	d =	39 mm		0	10		d =	37 mm				х
x	i =	6.14 in/hr		9	10	F	i =	5.83 in/hr	P =	9	psi	Х
x	d =	40 mm		44	10		d =	39 mm				Х
X P = 9 psi	i =	6.30 in/hr	G	11	12		i =	6.14 in/hr				х
x	d =	41 mm		40			d =	41 mm				х
x	i =	6.46 in/hr		13	14	н	i =	6.46 in/hr	P =	9	psi	х
x	d =	41 mm		45	40		d =	39 mm				х
X P = 9 psi	i =	6.46 in/hr	I	15	10		i =	6.14 in/hr				х
x	d =	38 mm		47	40		d =	36 mm				Х
x	i =	5.98 in/hr		17	18	J	i =	5.67 in/hr	P =	9	psi	Х
	d =	36 mm					d =	34 mm				Х
	i =	5.67 in/hr		19	20		i =	5.35 in/hr				x

Bottom Catch:	175	gal
Inlet Pressure:	16	psi
Average Wind:	0	mph
Average Depth:	37.93	mm
Average Rainfall Intensity:	5.97	in/hr
Christiansen Uniformity Coefficient:	95	_

DDRF

Rainfall Calibration

Slope 2 - Target 4 in/hr

Date: 13-Apr-12

Start Time: 1:30 PM

End Time: 1:45 PM

Test Time: <u>15</u> min.

(circle "x" for open valves)

TOP OF SLOPE

x x **X X**

P = ___psi A

			_			_				
	d =	mm		1	2	d =	mm			X
	i =	0.00 in/hr				B i=	0.00 in/hr	P =	р	si X
x	d =	mm		3	4	d =	mm			х
X P =psi	i =	0.00 in/hr	С	•	-	i =	0.00 in/hr			х
x	d =	mm		5	6	d =	mm			Х
х	i =	0.00 in/hr		•	· ·	D i=	0.00 in/hr	P =	9 p	si X
x	d =	<u>25</u> mm		7	8	d =	<u>23</u> mm			х
X P = _ 9 _ psi	i =	3.94 in/hr	E	•	Ũ	i =	3.62 in/hr			х
x	d =	<u>25</u> mm		9	10	d =	<u>24</u> mm			х
x	i =	3.94 in/hr		•		F i=	3.78 in/hr	P =	9 p	osi x
x	d =	<u>26</u> mm		11	12	d =	<u>27</u> mm			х
x P = _ 9 _ psi	i =	4.09 in/hr	G	••	•-	i =	4.25 in/hr			Х
x	d =	<u>28</u> mm		13	14	d =	<u>28</u> mm			x
Х	i =	4.41 in/hr		10		H i=	4.41 in/hr	P =	9 p	osi x
x	d =	<u>26</u> mm		15	16	d =	<u>27</u> mm			Х
XP= 9 psi	i =	4.09 in/hr	I	10	10	i =	4.25 in/hr			Х
x	d =	24 mm		17	18	d =	25 mm			x
Х	i =	3.78 in/hr			10	J i=	3.94 in/hr	P =	9 p	si X
	d =	23 mm		10	20	d =	24 mm			Х
	i =	3.62 in/hr		19	20	i =	3.78 in/hr			Х

Inlet Pressure: 16 psi

Average Wind: 0 mph

Average Depth: 25.3571 mm

Average Rainfall Intensity: <u>3.99</u> in/hr

DDRF **Rainfall Calibration** Slope 2 - Target 2 in/hr

Date: <u>13-Apr-12</u>

Start Time: 2:00 PM

End Time: 2:15 PM

Test Time: ____15 ___min. (circle "x" for open valves)

TOP OF SLOPE

x x **X** x

P = ___psi

					<u>,,</u>			
	d =	mm		1	2	d =mm		x
	i =	0.00 in/hr				B i = 0.00 in/hr	P =	psi X
x	d =	mm		3	4	d =mm		х
X P =psi	i =	0.00 in/hr	С			i = 0.00 in/hr		x
x	d =	mm		5	6	d =mm		х
х	i =	0.00 in/hr		•		D i = 0.00 in/hr	P = 9	psi X
x	d =	<u>13</u> mm		7	8	d = <u>13 </u> mm		х
X P = _ 9 _ psi	i =	2.05 in/hr	Е	•	Ũ	i = 2.05 in/hr		x
x	d =	<u>13</u> mm		9	10	d = <u>14</u> mm		х
x	i =	2.05 in/hr		•		F i = 2.20 in/hr	P = 9	psi x
x	d =	<u>14</u> mm		11	12	d = <u>14</u> mm		Х
x P = _ 9 _ psi	i =	2.20 in/hr	G	••	•=	i = 2.20 in/hr		x
x	d =	<u>13</u> mm		13	14	d = <u>15</u> mm		x
x	i =	2.05 in/hr		10	14	H i = 2.36 in/hr	P = 9	psi x
x	d =	<u>13</u> mm		15	16	d = <u>13 </u> mm		Х
x P = 9 psi	i =	2.05 in/hr	I	15	10	i = 2.05 in/hr		х
x	d =	14 mm		17	18	d = <u>13</u> mm		х
Х	i =	2.20 in/hr			10	J i = 2.05 in/hr	P= 9	psi x
	d =	12 mm		10	20	d = <u>12</u> mm	1 —	Х
	i =	1.89 in/hr		19	20	i = 1.89 in/hr		Х

Bottom Catch: 60 gal

Inlet Pressure: 16 psi

Average Wind: 0 mph

Average Depth: 13.28571 mm

Average Rainfall Intensity: in/hr 2.09

DDRF

Rainfall Calibration

Slope 1 - Target 6 in/hr

Date: <u>13-Apr-12</u>

Start Time: 9:10 AM E

End Time: 9:25 AM

Test Time: <u>15</u> min.

(circle "x" for open valves)

TOP OF SLOPE

х	Х	Х	Х	
---	---	---	---	--

Ρ	=	9	

					A	_				
x	d =	mm		1	2	d =mm	-			
X P = <u>9</u> psi	i =	0.00 in/hr	В	•	2	i = 0.00 in/hr				
х	d =	mm		3	Δ	d = mm				Х
x	i =	0.00 in/hr		,	-	C i = 0.00 in/hr	P =	9	psi	Х
x	d =	mm		5	6	d = mm				Х
X P = <u>9</u> psi	i =	0.00 in/hr	D	,	0	i = 0.00 in/hr				х
x	d =	39 mm		7	Q	d = <u>37</u> mm				Х
x	i =	6.14 in/hr		1	U	E i = 5.83 in/hr	P =	9	psi	Х
x	d =	<u>40</u> mm		9	10	d = <u>39</u> mm				Х
X P = <u>9</u> psi	i =	6.30 in/hr	F	,	10	i = 6.14 in/hr				х
х	d =	<u>41</u> mm		11	12	d = <u>40</u> mm				х
x	i =	6.46 in/hr			12	G i = 6.30 in/hr	P = _	9	psi	Х
x	d =	<u>40</u> mm		13	14	d = <u>40</u> mm				Х
X P = <u>9</u> psi	i =	6.30 in/hr	н	15	14	i = 6.30 in/hr				Х
х	d =	<u>38</u> mm		15	16	d = <u>38</u> mm				Х
х	i =	5.98 in/hr		15	10	I i = 5.98 in/hr	P =	9	psi	Х
x	d =	<u>37</u> mm		17	18	d = <u>39</u> mm				Х
X P = 9 psi	i =	5.83 in/hr	J		10	i = 6.14 in/hr				Х
x	d =	34 mm		10	20	d = <u>36</u> mm				
Х	i =	5.35 in/hr		13	20	i = 5.67 in/hr				

Average Rainfall Intensity: 6.05 in/hr

DDRF Rainfall Calibration Slope 1 - Target 4 in/hr

Date: <u>13-Apr-12</u>

Start Time: 8:30 AM

End Time: 8:45 AM

Test Time: <u>15</u> min.

(circle "x" for open valves)

TOP OF SLOPE

x x **X X**

P = <u>9</u> psi

							A		_		
Х			d =	mm		1	2	d =mm	-		
X P =	9	psi	i =	0.00 in/hr	В			i = 0.00 in/hr			
Х			d =	mm		3	4	d =mm			Х
х			i =	0.00 in/hr				C i = 0.00 in/hr	P = _	9	psi X
X			d =	mm		5	6	d =mm			х
X P =	9	psi	i =	0.00 in/hr	D	•	•	i = 0.00 in/hr			х
х		_	d =	<u>23</u> mm		7	8	d = <u>24</u> mm			Х
x			i =	3.62 in/hr		-	· ·	E i = 3.78 in/hr	P =	9	psi X
х			d =	<u>26</u> mm		9	10	d = <u>26</u> mm] _		x
x P =	9	psi	i =	4.09 in/hr	F	•		i = 4.09 in/hr			х
x		_	d =	<u>26</u> mm		11	12	d = <u>27</u> mm			х
Х			i =	4.09 in/hr				G i = 4.25 in/hr	P =	9	psi x
x			d =	<u>25</u> mm		13	14	d = <u>28</u> mm] –		x
x P =	9	psi	i =	3.94 in/hr	н	10		i = 4.41 in/hr			Х
x		_	d =	<u>24</u> mm		15	16	d = <u>27</u> mm			х
Х			i =	3.78 in/hr		10	10	I i = 4.25 in/hr	P =	9	psi X
х			d =	<u>24</u> mm		17	18	d = <u>25</u> mm	1 -		x
X P =	9	psi	i =	3.78 in/hr	J			i = 3.94 in/hr			X
x		•	d =	<u>23</u> mm		10	20	d = <u>24</u> mm			
Х			i =	3.62 in/hr		13	20	i = 3.78 in/hr			

Bottom Catch: 125 gal

Inlet Pressure: <u>16</u>psi

Average Wind: 0 mph

Average Depth: 25.14 mm

Average Rainfall Intensity: 3.96 in/hr

DDRF

Rainfall Calibration

Slope 1 - Target 2 in/hr

Date: 13-Apr-12

Start Time: 8:10 AM

End Time: 8:25 AM

Test Time: <u>15</u> min.

(circle "x" for open valves)

TOP OF SLOPE

						x x	X x			
						P =	4	psi		
x			d =	mm		1	2	d =mm	_	
X P =	=	_psi	i =	0.00 in/hr	В	•		i = 0.00 in/hr		
х			d =	mm		3	4	d =mm		х
х			i =	0.00 in/hr		5	+	C i = 0.00 in/hr	P =	psi X
х			d =	mm		5	6	d =mm		х
X P =	= 9	psi	i =	0.00 in/hr	D	3	0	i = 0.00 in/hr		x
х			d =	<u>12</u> mm		7	8	d = <u>12</u> mm		x
х			i =	1.89 in/hr		1	0	E i = 1.89 in/hr	P =	9 psi x
х			d =	<u>14</u> mm		٥	10	d = <u>14</u> mm		Х
X P =	= 9	psi	i =	2.20 in/hr	F	5	10	i = 2.20 in/hr		x
х			d =	<u>14</u> mm		11	12	d = <u>15</u> mm		x
x			i =	2.20 in/hr			12	G i = 2.36 in/hr	P =	9 psi x
х			d =	13_mm		12	14	d =15 mm]	x
xP=	= 9	psi	i =	2.05 in/hr	н	15	14	i = 2.36 in/hr		х
Х			d =	12 mm		15	16	d = <u>13</u> mm		x
х			i =	1.89 in/hr		15	10	l i = 2.05 in/hr	P =	9 psi X
х			d =	12 mm		17	18	d = <u>13</u> mm]	X
X P =	= 9	psi	i =	1.89 in/hr	J	17	10	i = 2.05 in/hr		x
Х		-	d =	11_mm		10	20	d = <u>11</u> mm		
х			i =	1.73 in/hr		13	20	i = 1.73 in/hr	_	

60	gal
16	psi
0	mph
12.93	mm
2.04	in/hr
92	_
	60 16 0 12.93 2.04 92

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX F – TEST SOIL CHARACTERIZATION

TRI/ENVIRONMENTAL, INC.

A Texas Research International Company

Proctor Compaction Test

ASTM D 4718, Oversize Particle Correction					
Corrected Maximum Dry Density (pcf):	97.8				
Corrected Optimum Moisture Content (%):	22.0				

C. Joel Sprague, 8/19/12

Quality Review/Date

Tested by: J. Sprague

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 🗆 (512) 263-2101 🗆 (512) 263-2558 🗆 1-800-880-TEST

Compaction Worksheet ASTM D 2937

Location: C	Date: 8/19/2012					
Drive Cylinder:	Dia., mm =	98	Length, mm =	127	Volume, $ft^3 = 0.034$	
Г			Comp			
Tube #	1	2	3	4	5	6
Wt. of Wet Soil + Mold (g)	2266.0	2311.0	2311.0	2339.0	2323.0	2325.0
Wt. of Mold (g)	613.0	612.0	613.0	615.0	615.0	615.0
Wt. of Wet Soil (g)	1653.0	1699.0	1698.0	1724.0	1708.0	1710.0
Γ	Moisture Content					
Tare Number	D-13	D-17	D-15	D-4	D-3	D-9
Wt. of Tare (g)	236.0	232.0	231.0	234.0	232.0	231.0
Wt. of Wet Soil + Tare (g)	1889.0	1931.0	1929.0	1958.0	1940.0	1941.0
Wt. of Dry Soil + Tare (g)	1507.0	1530.0	1544.0	1577.0	1546.0	1558.0
Water Content, w (%)	30.055	30.894	29.322	28.369	29.985	28.862
Wet density, $\gamma_{wet} = W' / V_h (lb/ft^3) =$	107.63	110.62	110.56	112.25	111.21	111.34
Dry density, $\gamma_{dry} = \gamma_{wet} / [1 + w] (lb/ft^3) =$	82.75	84.51	85.49	87.44	85.55	86.40
Max Std. Proctor Dry density $(lb/ft^3) =$	97.80	97.80	97.80	97.80	97.80	97.80
Opt. Moisture (%) =	22.00	22.00	22.00	22.00	22.00	22.00
Compaction as % of Std. Proctor =	84.6%	86.4%	87.4%	89.4%	87.5%	88.3%
Avg Compaction as % of Std. Proctor =			87.	3%		

C. Joel Sprague, 8/19/12

Quality Review/Date

Tested by: J. Sprague

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reported of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 🗆 (512) 263-2101 🗆 (512) 263-2558 🗆 1-800-880-TEST

Compaction Worksheet ASTM D 2937

Location: C	Date:	Date: 8/19/2012					
Drive Cylinder:	Dia., mm =	98	Length, mm =	127	Volume, ft ³ =	0.034	
Г			Comp	Compaction			
Tube #	1	2	3	4	5	6	
Wt. of Wet Soil + Mold (g)	2357.0	2333.0	2358.0				
Wt. of Mold (g)	613.0	612.0	613.0				
Wt. of Wet Soil (g)	1744.0	1721.0	1745.0	0.0	0.0	0.0	
			Moistur	e Content			
Tare Number	В	Т	М				
Wt. of Tare (g)	217.0	217.1	216.8				
Wt. of Wet Soil + Tare (g)	334.4	341.1	357.4				
Wt. of Dry Soil + Tare (g)	309.1	314.6	326.8				
Water Content, w (%)	27.482	27.218	27.802	#DIV/0!	#DIV/0!	#DIV/0!	
Wet density, $\gamma_{wet} = W' / V_h (lb/ft^3) =$	113.55	112.05	113.62	0.00	0.00	0.00	
Dry density, $\gamma_{dry} = \gamma_{wet} / [1 + w] (lb/ft^3) =$	89.07	88.08	88.90	#DIV/0!	#DIV/0!	#DIV/0!	
Max Std. Proctor Dry density $(lb/ft^3) =$	97.80	97.80	97.80				
Opt. Moisture (%) =	22.00	22.00	22.00				
Compaction as % of Std. Proctor =	91.1%	90.1%	90.9%	#DIV/0!	#DIV/0!	#DIV/0!	
Avg Compaction as % of Std. Proctor =			90	.7%			

C. Joel Sprague, 8/19/12

Quality Review/Date

Tested by: J. Sprague

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reported of this report, except in full, without prior approval of TRI.

9063 Bee Caves Road 🗆 Austin, TX 78733-6201 🗆 (512) 263-2101 🗆 (512) 263-2558 🗆 1-800-880-TEST

GSWCC - BMP Testing October 27, 2012 (Revised August 21, 2014) Appendix

APPENDIX G – TESTED PRODUCTS

GEOFABRICS GFG-B Type B

TRI / Environmental, Inc. A Texas Research International Company

August 14, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jspraue@tri-env.com email: jespraue@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2368-68-04
Material(s) Tested:	1, GeoFabrics GFG-B Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Falling Head Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

LABORATORY TEST RESULTS

TRI Client: DDRF , TRI / Environmental

Material: GeoFabrics GFG-B Woven Geotextile Sample Identification: GFG-B-1 TRI Log #: E2368-68-04

PARAMETER	TEST R	EPLICA	TE NUN	IBER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	27	26	27	27	27	27	27	27	29	27	27 26	1 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams)	1.98	1.98	2.02	2.01	1.96	1.96	1.98	1.97	1.98	1.97	1.98	0.02
Mass/Unit Area (oz/sq.yd)	4.61	4.61	4.70	4.68	4.56	4.56	4.61	4.58	4.61	4.58	4.61	0.05
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs)	240	241	229	224	235	218	259	200	247	224	232	17
TD - Tensile Strength (lbs)	168	161	156	175	175	171	181	162	181	179	171	9
MD - Elong. @ Max. Load (%)	21	21	23	19	21	20	23	17	21	19	21	2
TD - Elong. @ Max. Load (%)	14	15	15	17	16	15	19	15	17	16	16	1
Apparent Opening Size (ASTM D 4	751)											
Opening Size Diameter (mm)	0.558	0.420	0.419	0.443	0.487						0.465	0.058
Sieve No.	30	40	40	35	35						35	

MD Machine Direction TD Transverse Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

LABORATORY TEST RESULTS

TRI Client: DDRF , TRI / Environmental

Material: GeoFabrics GFG-B Woven Geotextile Sample Identification: GFG-B-1 TRI Log #: E2368-68-04

PARAMETER	TEST R	EPLICA		IBER							MEAN	STD. DEV.
Percent Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Open Area (%)	14.2	5.2	2.4								7.3	
Falling Head Permittivity (ASTM D	1 4491, 9-iı	2 n Upper	3 Standp	4 ipe; 2.0	5 in oper	6 ning)	7	8	9	10		
Water Temp. (C): Correction Factor:	20.7 0.99]										
Test Speciemn No. >:			1					2				
Thickness (mils)	27.4	27.4	27.4	27.4	27.4	27.6	27.6	27.6	27.6	27.6		
Time (s)	12.7	12.7	12.6	12.2	12.7	13.2	13.2	13.2	13.1	13.2		
Specimen Permittivity (s-1)	2.23	2.23	2.25	2.33	2.23	2.15	2.15	2.15	2.17	2.15		
Specimen Permittivity @20°C (sec-1)	2.21	2.21	2.22	2.30	2.21	2.12	2.12	2.12	2.14	2.12		
Specimen Flow rate (GPM/ft2)	165	165	166	172	165	159	159	159	160	159		
Specimen Permeability (cm/s)	0.15	0.15	0.15	0.16	0.15	0.15	0.15	0.15	0.15	0.15		
Test Speciemn No. >:			3					4				
Thickness (mils)	27.9	27.9	27.9	27.9	27.9	27.3	27.3	27.3	27.3	27.3		
Time (s)	11.6	11.6	12.1	12.0	11.6	12.2	12.1	12.1	12.2	12.2		
Permittivity (s-1)	2.45	2.45	2.34	2.36	2.45	2.33	2.34	2.34	2.33	2.33		
Specimen Permittivity @20°C (sec-1)	2.42	2.42	2.32	2.34	2.42	2.30	2.32	2.31	2.30	2.30		
Specimen Flow rate (GPM/ft2)	181	181	173	175	181	172	173	173	172	172		
Specimen Permeability (cm/s)	0.17	0.17	0.16	0.17	0.17	0.16	0.16	0.16	0.16	0.16		
								Pei	mittivit	2.26		
								FIOW I	rate (GF	169		
				ALUE				Fenne	ability	(011/3)	0.10	

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

SILT SAVER BSRF C-AH pu GSWCC

May 7, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF, TRI/Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-60-08
Material(s) Tested:	1, Siltsaver - BSRF Nonwoven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Constant Head Permittivity (4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

cc: Sam R. Allen, Vice President and Division Manager

GEOTEXTILE TEST RESULTS

TRI Client: DDRF, TRI/Environmental

Material: SiltSaver BSRF Nonwoven Geotextile Sample Identification: GSWCC - BSRF TRI Log #: E2366-60-08

1 2 3 4 5 6 7 8 9 10 Thickness (mls) 48 46 37 46 44 37 49 35 50 37 43 6	PARAMETER	TEST REPLICATE NUMBER						S MEAN [
Intervess (ASI M D 5199) Thickness (mils) 48 46 37 46 44 37 49 35 50 37 43 6 Mask/Unit Area (ASTM D 5261) 5' diameter circle (grams) 2.01 1.93 2.07 2.19 1.79 1.84 2.20 1.90 2.03 1.83 1.98 0.15 Grab Tensile Croperies (ASTM D 4632) MD - Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 MD - Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 9 17 MD - Elong. @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 91 17 Apparent Opening Size (ASTM D 4751) Opening Size (ASTM D 4751) Opening Size (ASTM D 475 40.75 40.75 40.75 40.75	This has a section D 5400	1	2	3	4	5	6	7	8	9	10								
Thickness (mils) 48 46 37 46 44 37 49 35 50 37 43 6 << <min< th=""> Mass/Unit Area (ASTM D 5261) 5 5 1.93 2.01 1.93 2.07 2.19 1.79 1.84 2.20 1.90 2.03 1.83 1.98 0.15 Mass/Unit Area (a2/sq.yd) 4.68 4.49 4.81 5.09 4.16 4.28 5.12 4.42 4.72 4.26 4.28 6.0 0.34 Grab Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 17 MO - Elong, @ Max. Load (%) 95 111 94 102 813 99 105 98 81 94 96 9 117 8 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 0.20 0.20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0<!--</td--><td>Thickness (ASTM D 5199)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min<>	Thickness (ASTM D 5199)																		
Mass/Unit Area (ASTM D 5261) 5" diameter circle (grams) 2.01 1.93 2.07 2.19 1.79 1.84 2.20 1.90 2.03 1.83 1.98 0.15 Mass/Unit Area (oz/sq.yd) 4.68 4.49 4.81 5.09 4.16 4.28 5.12 4.42 4.72 4.26 0.34 Grab Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 TD - Tensile Strength (lbs) 68 100 73 82 107 92 100 79 122 77 90 17 D- Elong, @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 117 8 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 0.164 80 93 59.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 </td <td>Thickness (mils)</td> <td>48</td> <td>46</td> <td>37</td> <td>46</td> <td>44</td> <td>37</td> <td>49</td> <td>35</td> <td>50</td> <td>37</td> <td>43 35</td> <td>6 min</td>	Thickness (mils)	48	46	37	46	44	37	49	35	50	37	43 35	6 min						
5° diameter circle (grams) 2.01 1.93 2.07 2.19 1.79 1.84 2.20 1.90 2.03 1.83 1.98 0.15 Mass/Unit Area (oz/sq.yd) 4.68 4.49 4.81 5.09 4.16 4.28 5.12 4.42 4.72 4.26 0.34 Grab Tensile Properties (ASTM D 4632) 102 115 106 108 86 102 114 114 101 106 105 9 TD - Tensile Strength (lbs) 68 100 73 82 107 92 100 79 122 77 90 17 MD - Elong, @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 9 117 8 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 183 9.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 39.35 <td>Mass/Unit Area (ASTM D 5261)</td> <td></td> <td>~~~~</td>	Mass/Unit Area (ASTM D 5261)												~~~~						
Organization 2.01 1.33 2.01 1.33 1.03 1.200 1.33 1.03 1.200 0.13 Grab Tensile Properties (ASTM D 4632) MD f.88 4.81 5.09 4.16 4.28 5.12 4.42 4.72 4.26 0.33 MD Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 MD Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 9 117 9 117 9 117 9 117 9 117 9 117 9 105 98 81 94 96 9 117 8 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 2 2 117 8 0.164 80 0.048 80 0.048 80 0.048 80 0.048 80 0.048 80 0.048 80	5" diameter circle (grams)	2.01	1 03	2.07	2 10	1 70	1 8/	2 20	1 00	2.03	1 83	1.08	0.15						
Grab Tensile Properties (ASTM D 4632) MD Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 99 17 MD Tensile Strength (lbs) 68 100 73 82 107 92 100 79 122 77 90 17 MD Elong, @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 9 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 0.104 100 140 102 180 0.042 Steve No. 70 80 70 100 140 140 112 116 0.042 Correction Factor: 20 1.000 1.000 140 112 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.5 11.5 1.13 1.12 1.12 1.12 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2	Mass/Unit Area (oz/sq.yd)	4.68	4.49	4.81	5.09	4.16	4.28	5.12	4.42	4.72	4.26	4.60	0.34						
MD - Tensile Strength (lbs) 102 115 106 108 86 102 114 114 101 106 105 9 TD - Tensile Strength (lbs) 68 100 73 82 107 92 100 79 122 77 99 17 MD - Elong, @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 9 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 . . 0.164 0.042 Sieve No. 70 80 70 100 140 . . . 0.164 0.042 Constant Head Permittivity (ASTM D 4491, 51-mm Constant Head; 2 in opening) 0.164 80 0.042 Correction Factor: 20 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 </td <td>Grab Tensile Properties (ASTM D 46</td> <td>632)</td> <td></td>	Grab Tensile Properties (ASTM D 46	632)																	
Inite instantion of the probability (role) Ref 100 73 82 107 92 110 79 122 77 90 17 MD - Elong, @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 96 9 TD - Elong, @ Max. Load (%) 132 117 120 123 113 104 122 118 109 115 96 9 Apparent Opening Size (ASTM D 4751) Opening Size Diameter (mm) 0.200 0.156 0.209 0.148 0.105 0.106 88 81 94 96 9 117 8 Apparent Opening Size Diameter (mm) 0.200 0.156 0.209 0.148 0.105 0.042 0.042 Water Temp. (C): 20 100 100 140 20 2.0	MD - Tensile Strength (lbs)	102	115	106	108	86	102	114	114	101	106	105	9						
MD - Elong. @ Max. Load (%) 95 111 94 102 83 99 105 98 81 94 115 117 9 Apparent Opening Size (ASTM D 4751) 0.200 0.156 0.209 0.148 0.105 0.164 0.042 Steve No. 70 80 70 100 140 122 118 109 115 0.164 0.042 Steve No. 70 80 70 100 140 102 5 9.3 53.35 39.35	TD - Tensile Strength (lbs)	68	100	73	82	107	92	100	79	122	77	90	17						
Ind John (1) John	MD - Flong @ Max Load (%)	95	111	٩ı	102	83	99	105	98	81	Q/	96	٩						
Apparent Opening Size (ASTM D 4751) Opening Size Diameter (mm) 0.200 0.156 0.200 0.148 0.105 Sieve No. 0.164 80 0.042 Constant Head Permittivity (ASTM D 4491, 51-mm Constant Head; 2 in opening) U Water Temp. (C): 2 Correction Factor: 1 2 Thickness (mils) 40.75 40 11.13 13	TD - Elong. @ Max. Load (%)	132	117	120	123	113	104	122	118	109	115	117	8						
Opening Size Diameter (mm) 0.200 0.156 0.209 0.148 0.105 Sieve No. 0.164 0.002 Constant Head Permittivity (ASTM D 4491, 51-mm Constant Head; 2 in opening) Water Temp. (C): 20 1.000 20 2.0	Apparent Opening Size (ASTM D 47	51)																	
Openming the behavior (mm) To Side S On to O	Opening Size Diameter (mm)	0 200	0 156	0 209	0 148	0 105						0 164	0 042						
Constant Head Permittivity (ASTM D 4491, 51-mm Constant Head; 2 in opening) Water Temp. (C): Correction Factor: 20 1.000 Test Speciemn No. >: 1 2 Thickness (mils) 40.75 40.75 40.75 40.75 40.75 40.75 39.35	Sieve No.	70	80	70	100	140						80	0.042						
Water Temp. (C): Correction Factor:20 1.000Test Speciemn No. >:12Thickness (mils)40.7540.7540.7540.7540.7539.35<	Constant Head Permittivity (ASTM I	D 4491, 5	1-mm C	onstant	Head;	2 in ope	ning)												
Correction Factor: 1.000 Test Speciemn No. >: 1 1 2 Thickness (mils) 40.75 40.75 40.75 40.75 40.75 39.35 39.35 39.35 39.35 39.35 Volume Collected (liters) 2.0	Water Temp. (C):	20]																
I Z Inickness (mils) 40.75 40.75 40.75 40.75 40.75 40.75 3 3 3 3 3 3 3 3 3 3 3 0 2.0 <th 2.0<="" colspan="6" t<="" td=""><td>Correction Factor:</td><td>1.000</td><td>J</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Correction Factor:</td> <td>1.000</td> <td>J</td> <td></td>						Correction Factor:	1.000	J										
Thickness (mils) 40.75 40.75 40.75 40.75 40.75 39.35 39.35 39.35 39.35 39.35 39.35 Volume Collected (liters) 2.0 2	Test Speciemn No. >:			1					2										
Volume Collected (liters)2.0	Thickness (mils)	40.75	40.75	40.75	40.75	40.75	39.35	39.35	39.35	39.35	39.35								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time (s)	17.1	17.1	17.4	17.6	17.6	11.1	11.2	11.2	11.2	11.1								
Specimen Flow rate (GPM/ft2) 86 86 85 84 84 133 131 131 131 133 Specimen Permeability (cm/s) 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.18 0.19 0.17 0.17 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.8 1.8	Specimen Permittivity @20°C (sec-1)	1.15	1.15	1.13	1.12	1.12	1.77	1.76	1.76	1.76	1.77								
Specimen Permeability (cm/s) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.18 0.18 0.18 0.18 0.18 0.18 Test Speciemn No. >: 3 47 47 47 47 47 38.4 <td>Specimen Flow rate (GPM/ft2)</td> <td>86</td> <td>86</td> <td>85</td> <td>84</td> <td>84</td> <td>133</td> <td>131</td> <td>131</td> <td>131</td> <td>133</td> <td></td> <td></td>	Specimen Flow rate (GPM/ft2)	86	86	85	84	84	133	131	131	131	133								
Test Speciemn No. >: 3 47 47 47 47 47 47 38.4	Specimen Permeability (cm/s)	0.12	0.12	0.12	0.12	0.12	0.18	0.18	0.18	0.18	0.18								
Thickness (mils) 47 47 47 47 47 38.4	Test Speciemn No. >:			3					4										
Volume Collected (liters) 2.0 <t< td=""><td>Thickness (mils)</td><td>47</td><td>47</td><td>47</td><td>47</td><td>47</td><td>38.4</td><td>38.4</td><td>38.4</td><td>38.4</td><td>38.4</td><td></td><td></td></t<>	Thickness (mils)	47	47	47	47	47	38.4	38.4	38.4	38.4	38.4								
Time (s) 13.8 13.8 13.8 13.8 13.8 13.8 13.8 11.7	Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0								
Specimen Permittivity @20°C (sec-1) 1.43 1.43 1.43 1.43 1.68	Time (s)	13.8	13.8	13.8	13.8	13.8	11.7	11.7	11.7	11.7	11.7								
Specimen Flow rate (GPM/ft2) 107 107 107 107 107 126	Specimen Permittivity @20°C (sec-1)	1.43	1.43	1.43	1.43	1.43	1.68	1.68	1.68	1.68	1.68								
Specimen Permeability (cm/s) 0.17 0.17 0.17 0.17 0.20 0.20 0.16 0.16 0.16 TEMPERATURE CORRECTED VALUES Permittivity (s-1) Flow rate (GPM/ft2) 0.16 1.50 112 0.16	Specimen Flow rate (GPM/ft2)	107	107	107	107	107	126	126	126	126	126								
TEMPERATUREPermittivity (s-1)1.50CORRECTEDFlow rate (GPM/ft2)112VALUESPermeability (cm/s)0.16	Specimen Permeability (cm/s)	0.17	0.17	0.17	0.17	0.17	0.20	0.20	0.16	0.16	0.16								
CORRECTEDFlow rate (GPM/ft2)112VALUESPermeability (cm/s)0.16				TEN	IPERAT	URE	Permittivity (s-1)					1.50							
VALUES Permeability (cm/s) 0.16				CC	ORRECT	ED			Flow	rate (GF	PM/ft2)	112							
					VALUE	5			Perm	eability	(cm/s)	0.16							

MD Machine Direction TD Transverse Direction

The testing is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

THRACE LINQ

GRF - 400 EO Type C

June 28, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com email: jesprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2368-16-09
Material(s) Tested:	1, Thrace Linq GTF-400EO Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Falling Head Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

LABORATORY TEST RESULTS TRI Client: DDRF , TRI / Environmental

Material: Thrace Ling GTF-400EO Woven Geotextile Sample Identification: Thrace Linq 400EO TRI Log #: E2368-16-09

PARAMETER	TEST R	EPLICA	LE NUM	BER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	30	28	29	30	29	29	29	28	29	29	29 28	1 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	2.85 6.63	2.82 6.56	2.81 6.54	2.76 6.42	2.77 6.44	2.74 6.37	2.85 6.63	2.83 6.58	2.83 6.58	2.77 6.44	2.80 6.52	0.04 0.09
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs)	339	326	336	326	346	375	340	312	346	377	342	21
TD - Tensile Strength (lbs)	186	187	182	178	198	184	193	180	180	171	184	8
MD - Elong. @ Max. Load (%)	24	24	26	23	24	27	25	23	23	27	25	2
TD - Elong. @ Max. Load (%)	11	11	13	13	11	11	12	12	13	12	12	1
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm) Sieve No.	0.418 40	0.589 30	0.677 25	0.423 40	0.418 40						0.505 30	0.121

MD Machine Direction **TD** Transverse Direction

TRI Client: DDRF , TRI / Environmental

Material: Thrace Linq GTF 400EO Woven Geotextile Sample Identification: Thrace Linq 400EO TRI Log #: E2368-16-09

PARAMETER	TEST R	EPLICA	FE NUM	BER							MEAN	STD. DEV.
Percent Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Open Area (%)	24.4	18.4	21.1								21.3	
Falling Head Permittivity (ASTM D	1 4491, 9-ir	2 Upper	3 Standpi	4 pe; 1.5 i	5 in openi	6 ing)	7	8	9	10		
Water Temp. (C): Correction Factor:	19.5 1.02											
Test Speciemn No. >:			1					2				
Thickness (mils)	29.1	29.1	29.1	29.1	29.1	28.5	28.5	28.5	28.5	28.5		
Time (s)	15.5	15.4	15.4	14.9	15.4	14.3	14.3	14.3	14.3	14.3		
Specimen Permittivity (s-1)	3.25	3.28	3.28	3.39	3.28	3.53	3.53	3.53	3.53	3.53		
Specimen Permittivity @20°C (sec-1)	3.30	3.32	3.32	3.44	3.32	3.58	3.58	3.58	3.58	3.58		
Specimen Flow rate (GPM/ft2)	247	249	249	257	249	268	268	268	268	268		
Specimen Permeability (cm/s)	0.24	0.25	0.25	0.25	0.25	0.26	0.26	0.26	0.26	0.26		
Test Speciemn No. >:			3					4				
Thickness (mils)	28.5	28.5	28.5	28.5	28.5	29.1	29.1	29.1	29.1	29.1		
Time (s)	14.8	14.3	14.9	14.3	14.9	14.8	14.8	14.8	14.3	14.8		
Permittivity (s-1)	3.41	3.53	3.39	3.53	3.39	3.41	3.41	3.41	3.53	3.41		
Specimen Permittivity @20°C (sec-1)	3.46	3.58	3.44	3.58	3.44	3.46	3.46	3.46	3.58	3.46		
Specimen Flow rate (GPM/ft2)	259	268	257	268	257	259	259	259	268	259		
Specimen Permeability (cm/s)	0.25	0.26	0.25	0.26	0.25	0.26	0.26	0.26	0.26	0.26		
			тем					Por	mittivity	2.49		
				DDECT							260	
				VALUES	5			Perme	ale (Gr	(cm/s)	0.25	
					-				y ((0,1,1,0)	0.20	

May 16, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-72-03
Material(s) Tested:	1 Willacooche 1215 Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

TRI Client: DDRF , TRI / Environmental

Material: Willacoochee 1215 Woven Geotextile Sample Identification: Willacoochee 1215 TRI Log #: E2366-72-03

PARAMETER	TEST R	EPLICA [.]	TE NUM	BER							MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	25	25	28	27	26	24	25	25	22	23	25 22	2 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	1.43 3.33	1.44 3.35	1.44 3.35	1.43 3.33	1.42 3.30	1.44 3.35	1.45 3.37	1.45 3.37	1.44 3.35	1.44 3.35	1.44 3.34	0.01 0.02
Grab Tensile Properties (ASTM D	0 4632)											
MD - Tensile Strength (lbs) TD - Tensile Strength (lbs)	191 114	191 127	180 117	171 120	172 135	169 124	159 118	169 118	159 101	166 119	173 119	11 9
MD - Elong. @ Max. Load (%) TD - Elong. @ Max. Load (%)	29 24	27 24	28 23	25 23	25 25	26 26	25 22	27 24	23 23	25 23	26 23	2 1
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm) Sieve No.	0.514 30	0.532 30	0.830 20	0.592 30	0.568 30						0.607 25	0.128

MD Machine Direction TD Transverse Direction

TRI Client: DDRF , TRI / Environmental

Material: Willacoochee 1215 Woven Geotextile Sample Identification: Willacoochee 1215 TRI Log #: E2366-72-03

PARAMETER	TEST R		TE NUM	BER							MEAN	STD. DEV.
Barcont Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Percent Open Area (COL Method)												
Open Area (%)	8.1										8.1	#DIV/0!
Constant Head Permittivity (ASTM I	D 4491, 5 ⁻	1-mm C	onstant	Head; 2	2 in ope	ning)						
Water Temp. (C):	22	1										
Correction Factor:	0.953											
Test Speciemn No. >:			1					2				
Thickness (mils)	21	21	21	21	21	24	24	24	24	24		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	16.3	17.4	16.9	17.4	17.4	17.4	17.4	17.4	18.5	18.4		
Specimen Permittivity @20°C (sec-1)	1.15	1.08	1.11	1.08	1.08	1.08	1.08	1.08	1.01	1.02		
Specimen Flow rate (GPM/ft2)	86.1	80.6	83.0	80.6	80.6	80.6	80.6	80.6	75.8	76.3		
Specimen Permeability (cm/s)	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06		
Test Speciemn No. >:			3					4				
Thickness (mils)	24	24	24	24	24	23	23	23	23	23		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	15.8	15.8	15.8	15.8	16.4	14.8	14.8	15.3	16.7	15.9		
Specimen Permittivity @20°C (sec-1)	1.19	1.19	1.19	1.19	1.14	1.27	1.27	1.23	1.12	1.18		
Specimen Flow rate (GPM/ft2)	88.8	88.8	88.8	88.8	85.6	94.8	94.8	91.7	84.0	88.2		
Specimen Permeability (cm/s)	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.07	0.07	0.07		
										(1)		
			TEMPERATURE					Per	y (S-1)	1.14		
								Porm	(om/c)	85.0		
				VALUE	5	<u> </u>		reime	ability	(cnivs)	0.07	

TEN CATE FW402 Type C

May 25, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-71-10
Material(s) Tested:	1, Ten Cate FW402 Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

LABORATORY TEST RESULTS TRI Client: DDRF, TRI / Environmental

Material: Ten Cate FW 402 Woven Geotextile Sample Identification: Ten Cate FAS 402-125-30 TRI Log #: E2366-71-10

	TEAT D											STD.
PARAMETER	IESTR	EPLICA		BER						40	MEAN	DEV.
Thickness (ASTM D 5199)	1	2	3	4	5	6	/	8	9	10		
Thickness (mils)	29	28	27	31	28	27	27	28	34	29	29 27	2 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	2.58 6.00	2.55 5.93	2.58 6.00	2.55 5.93	2.53 5.88	2.67 6.21	2.62 6.09	2.62 6.09	2.67 6.21	2.60 6.05	2.60 6.04	0.05 0.11
Grab Tensile Properties (ASTM I	D 4632)											
MD - Tensile Strength (lbs)	474	477	421	387	446	418	413	490	491	494	451	39
TD - Tensile Strength (lbs)	322	276	285	256	257	234	213	264	233	220	256	33
MD - Elong. @ Max. Load (%)	44	45	40	39	43	40	39	45	43	45	42	2
TD - Elong. @ Max. Load (%)	95	77	82	80	84	64	63	73	69	71	76	10
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm) Sieve No.	0.415 40	0.415 40	0.416 40	0.417 40	0.786 20						0.490 35	0.166

MD Machine Direction TD Transverse Direction

LABORATORY TEST RESULTS TRI Client: DDRF, TRI / Environmental

<u>от</u> р

Material: Ten Cate FW 402 Woven Geotextile Sample Identification: Ten Cate FAS 402-125-30 TRI Log #: E2366-71-10

PARAMETER	TEST RE			BER							MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10		
Percent Open Area (COE Method)												
Open Area (%)	28.0	27.2									27.6	
Constant Head Permittivity (ASTM [0 4491, 51	l-mm C	onstant	Head; ²	1 in ope	ning)						
Water Temp. (C):	20.7											
Correction Factor:	0.99											
Test Speciemn No. >:			1					2				
Opening Diameter, cm	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54		
Contant Head, cm	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08		
Thickness (mils)	27.5	27.5	27.5	27.5	27.5	28.5	28.5	28.5	28.5	28.5		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	13.3	13.3	13.4	12.8	13.2	14.3	13.8	14.3	13.7	14.8		
Specimen Permittivity @20°C (sec-1)	5.77	5.77	5.73	6.00	5.81	5.37	5.56	5.37	5.60	5.19		
Specimen Flow rate (GPM/ft2)	432	432	428	449	435	401	416	401	419	388		
Specimen Permeability (cm/s)	0.40	0.40	0.40	0.42	0.41	0.37	0.39	0.39	0.41	0.38		
Test Speciemn No. >'			3*					4				
Opening Diameter, cm	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54		
Contant Head, cm	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08		
Thickness (mils)	27.6	27.6	27.6	27.6	27.6	26.7	26.7	26.7	26.7	26.7		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	14.8	14.7	14.8	15.3	15.3	16.4	16.4	15.9	16.4	16.4		
Specimen Permittivity @20°C (sec-1)	5.19	5.22	5.19	5.02	5.02	4.68	4.68	4.83	4.68	4.68		
Specimen Flow rate (GPM/ft2)	388	391	388	375	375	350	350	361	350	350		
Specimen Permeability (cm/s)	0.36	0.37	0.36	0.35	0.35	0.33	0.33	0.33	0.32	0.32		
			TEN	IPERAT	URE			Pe	mittivit	y (s-1)	5.27	
			CORRECTED					Flow I	rate (GP	M/ft2)	394	
				VALUE	s			Perme	ability	(cm/s)	0.37	
			•			-						

HANES GASF-A Type A

May 17, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

)

TRI Job Reference Number:	E2366-72-04
Material(s) Tested:	1, Terratex GASF-A Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (ASTM D 4491

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

TRI Client: DDRF , TRI / Environmental

Material: Hanes Terratex GASF-A Woven Geotextile Sample Identification: Terratex GASF , 402/125/30 TRI Log #: E2366-72-04

PARAMETER	TEST R	EPLICA ⁻		IBER							MEAN	STD. DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	25.7	24.1	25.6	24.6	24.5	25.0	23.5	23.0	23.2	24.8	24.4 23.0	0.9 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	1.58 3.68	0.56 1.30	1.55 3.61	1.57 3.65	1.58 3.68	1.52 3.54	1.54 3.58	1.50 3.49	1.50 3.49	1.57 3.65	1.45 3.37	0.31 0.73
Grab Tensile Properties (ASTM D	0 4632)											
MD - Tensile Strength (lbs) TD - Tensile Strength (lbs)	173 127	172 119	164 134	153 140	171 111	165 132	165 114	166 127	172 130	174 135	167 127	6 10
MD - Elong. @ Max. Load (%) TD - Elong. @ Max. Load (%)	23 23	27 21	26 25	21 25	23 19	25 23	23 19	27 19	25 25	27 25	25 22	2 3
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm) Sieve No.	0.586 30	0.599 30	0.589 30	0.524 30	0.597 30						0.579 30	0.031

MD Machine Direction TD Transverse Direction

TRI Client: DDRF , TRI / Environmental

Material: Belton 1935 Woven Geotextile Sample Identification: Belton 1935 TRI Log #: E2366-72-04

PARAMETER	TEST R	EPLICA	TE NUM	BER							MEAN	STD. DEV.
Percent Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Open Area (%)	9.05	13.3	26.0								16.1	
Constant Head Permittivity (ASTM	D 4491, 5 [.]	1-mm C	onstant	Head; 2	2 in ope	ning)						
Water Temp. (C):	22	1										
Correction Factor:	0.958]										
Test Speciemn No. >:			1					2				
Thickness (mils)	25.7	25.7	25.7	25.7	25.7	24.3	24.3	24.3	24.3	24.3		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	11.0	11.1	10.6	11.1	10.5	11.6	12.6	12.6	13.2	13.2		
Specimen Permittivity @20°C (sec-1)	1.71	1.70	1.78	1.70	1.80	1.63	1.50	1.50	1.43	1.43		
Specimen Flow rate (GPM/ft2)	128	127	133	127	134	122	112	112	107	107		
Specimen Permeability (cm/s)	0.11	0.11	0.12	0.11	0.12	0.11	0.10	0.09	0.09	0.09		
Test Speciemn No. >:			3					4				
Thickness (mils)	23.9	23.9	23.9	23.9	23.9	24.9	24.9	24.9	24.9	24.9		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	13.7	13.7	14.2	13.8	14.3	13.7	13.8	13.7	13.7	13.7		
Specimen Permittivity @20°C (sec-1)	1.38	1.38	1.33	1.37	1.32	1.38	1.37	1.38	1.38	1.38		
Specimen Flow rate (GPM/ft2)	103	103	99	102	99	103	102	103	103	103		
Specimen Permeability (cm/s)	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.09	0.09	0.09		
			TEM	PERAT	URE			Pe	y (s-1)	1.49		
			CORRECTED					Flow	PM/ft2)	111		
				VALUES	>			Perme	eability	(cm/s)	0.09	

MD Machine Direction TD Transverse Direction

DDD GA-CSA C-System

May 7, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jspraue@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-60-09
Material(s) Tested:	1 GA-CSA Woven Geotextile -Netting Composite Material
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (CGSB 148,1 Method 4-94;)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

TRI Client: DDRF , TRI / Environmental

Material: Woven Geotextile - Netting Composite Material Sample Identification: GSWCC - DDD GA-CSA TRI Log #: E2366-60-09

PARAMETER	TEST RI	EPLICA	TE NUM	BER							MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	83	88	87	84	84	88	84	82	89	87	86 82	2 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams)	3.26	3.26	3.23	3.27	3.22	3.30	3.26	3.27	3.23	3.29	3.26	0.03
Mass/Unit Area (oz/sq.yd)	7.58	7.58	7.51	7.61	7.49	7.68	7.58	7.61	7.51	7.65	7.58	0.06
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs)	330	353	344	358	370	404	361	326	374	418	364	29
TD - Tensile Strength (lbs)	222	200	208	193	164	197	180	211	214	223	201	19
MD - Elong. @ Max. Load (%)	20	21	21	19	21	22	22	19	21	23	21	1
TD - Elong. @ Max. Load (%)	15	13	13	13	14	16	13	17	17	17	15	2
Apparent Opening Size (ASTM D 4	1751)											
Opening Size Diameter (mm)	0.419	0.416	0.417	0.417	0.409						0.416	0.004
Sieve No.	40	40	40	40	40						40	

MD Machine Direction TD Transverse Direction

TRI Client: DDRF , TRI / Environmental

Material: Woven Geotextile - Netting Composite Material Sample Identification: GSWCC - DDD GA-CSA TRI Log #: E2366-60-09

PARAMETER	TEST RI	EPLICATE NUMBER										DEV.
Percent Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Open Area (%)	20.9	24.8									22.9	
Constant Head Permittivity (ASTM	D 4491, 5	1-mm C	onstant	Head; 2	2 in ope	ning)						
Water Temp. (C): Correction Factor:	20 1.000											
Test Speciemn No. >:			1					2				
Thickness (mils)	88.55	88.55	88.55	88.55	88.55	90.45	90.45	90.45	90.45	90.45		
Time (s)	2.0 9.5	2.0 10.0	2.0 9.5	2.0 10.0	2.0 10.1	2.0 8.6	2.0 8.9	2.0 8.6	2.0 8.5	2.0 9.0		
Specimen Permittivity @20°C (sec-1)	2.07	1.97	2.07	1.97	1.95	2.29	2.21	2.29	2.32	2.19		
Specimen Flow rate (GPM/ft2) Specimen Permeability (cm/s)	155 0.47	147 0.44	155 0.47	147 0.44	146 0.44	171 0.51	165 0.50	171 0.53	173 0.53	164 0.50		
Test Speciemn No. >:			3					4				
Thickness (mils)	89.7	89.7	89.7	89.7	89.7	91.1	91.1	91.1	91.1	91.1		
Volume Collected (liters) Time (s)	2.0 7.5	2.0 7.4	2.0 8.0	2.0 7.5	2.0 8.0	2.0 8.5	2.0 8.4	2.0 8.5	2.0 8.5	2.0 8.5		
Specimen Permittivity @20°C (sec-1)	2 62	2 66	2 46	2.62	2 46	2 32	2 34	2 32	2 32	2 32		
Specimen Flow rate (GPM/ft2)	196	199	184	196	184	173	175	173	173	173		
Specimen Permeability (cm/s)	0.60	0.61	0.56	0.60	0.56	0.53	0.53	0.54	0.54	0.54		
			TEMPERATURE CORRECTED VALUES					Per Flow I Perme	rmittivit rate (GP eability (y (s-1) PM/ft2) (cm/s)	2.29 171 0.52	
	0.00	0.01	TEN	IPERAT DRRECT	URE ED			Per Flow I Perme	rmittivit rate (GP eability (y (s-1) M/ft2) (cm/s)	2.29 171 0.52	

MD Machine Direction TD Transverse Direction

PROPEX Geotex 111F Type C

May 7, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF - TRI/Environmental, Inc. P.O. Box 9192 Greenville, SC 29604

email: jspraue@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-60-10
Material(s) Tested:	1 ,Propex 111F Black Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Constant Head Permittivity (ASTM D 4491) Percent Open Area (COE Method)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

GEOTEXTILE TEST RESULTS

TRI Client: DDRF - TRI/Environmental, Inc.

<u>от</u> р

Material: Propex 111F Black Woven Geotextile Sample Identification: GSWCC - Propex - 111F TRI Log #: E2366-60-10

PARAMETER	TEST R	EPLICAT	E NUM	BER							MEAN	DEV.
	1	2	3	4	5	6	7	8	9	10		
Thickness (ASTM D 5199)												
Thickness (mils)	34	34	33	35	34	35	35	34	32	34	34 32	1 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	3.13 7.28	3.09 7.19	3.10 7.21	3.14 7.30	3.11 7.23	3.12 7.26	3.10 7.21	3.08 7.16	3.11 7.23	3.13 7.28	3.11 7.24	0.02 0.04
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs)	359	349	343	360	355	362	352	321	348	358	351	12
TD - Tensile Strength (lbs)	231	2665	237	234	254	281	265	290	280	259	259	22
MD - Elong. @ Max. Load (%)	21	20	19	20	21	20	20	20	19	21	20	1
TD - Elong. @ Max. Load (%)	11	13	11	9	13	12	13	13	13	13	12	1
Apparent Opening Size (ASTM D 4	751)											
Opening Size Diameter (mm) Sieve No.	0.414 40	0.414 40	0.416 40	0.417 40	0.417 40						0.416 40	0.001

MD Machine Direction TD Transverse Direction

GEOTEXTILE TEST RESULTS

TRI Client: DDRF - TRI/Environmental, Inc.

етп

Material: Propex 111F Black Woven Geotextile Sample Identification: GSWCC - Propex - 111F TRI Log #: E2366-60-10

1 22.2	2	3	4	5	6	7	8	9	10			
22.2						-	•	5	10			
	21.1	11.1								18.2]	
4491, 51	l-mm C	onstant	Head; 2	2 in ope	ning)							
20.5												
0.988												
		1					2					
33	33	33	33	33	33	33	33	33	33			
2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
10.6	10.5	10.5	11.1	10.6	10.5	10.6	10.6	10.6	10.6			
1.83	1.85	1.85	1.75	1.83	1.85	1.83	1.83	1.83	1.83			
137	139	139	131	137	139	137	137	137	137			
0.15	0.16	0.16	0.15	0.15	0.16	0.15	0.15	0.15	0.15			
		3					4					
33	33	33	33	33	32	32	32	32	32			
2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
10.6	10.6	10.5	10.6	10.5	12.7	13.2	13.2	13.7	13.2			
1.83	1.83	1.85	1.83	1.85	1.53	1.47	1.47	1.42	1.47			
137	137	139	137	139	115	110	110	106	110			
0.15	0.15	0.16	0.15	0.16	0.13	0.12	0.12	0.12	0.12			
		TEM	PERAT	URE			Per	y (s-1)	1.74			
		co	RRECT	ED			Flow r	M/ft2)	131			
			VALUES	5			Perme	eability ((cm/s)	0.15	J	
	22.2 4491, 51 20.5 0.988 33 2.0 10.6 1.83 137 0.15 33 2.0 10.6 1.83 137 0.15	22.2 21.1 4491, 51-mm C 20.5 0.988 33 33 2.0 2.0 10.6 10.5 1.83 1.85 137 139 0.15 0.16 33 33 2.0 2.0 10.6 10.6 137 139 0.15 0.16 10.6 10.6 1.83 1.83 137 137 0.15 0.15	22.2 21.1 11.1 4491, 51-mm Constant 20.5 0.988 1 33 33 2.0 2.0 2.0 10.6 10.5 10.5 1.83 1.85 1.85 137 139 139 0.15 0.16 0.16 10.6 10.6 10.5 1.83 1.85 1.85 137 139 139 0.15 0.16 10.5 1.83 1.83 1.85 137 137 139 0.15 0.15 0.16 TEM CO	22.2 21.1 11.1 4491, 51-mm Constant Head; 2 20.5 0.988 1 33 33 2.0 2.0 2.0 2.0 2.0 2.0 10.6 10.5 10.5 10.5 137 139 137 139 0.15 0.16 0.15 2.0 2.0 2.0 2.0 2.0 1.83 1.85 1.83 3.3 33 33 33 33 1.6 10.6 10.6 10.5 10.6 10.5 10.6 10.6 10.6 10.6 1.83 1.83 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.85 1.85 1.85 1.85 1.85 <	22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in ope 20.5 0.988 1 33 33 33 33 33 2.0 2.0 2.0 2.0 2.0 10.6 10.5 10.5 11.1 10.6 1.83 1.85 1.85 1.75 1.83 137 139 139 131 137 0.15 0.16 0.16 0.15 0.15 33 33 33 33 33 2.0 2.0 2.0 2.0 1.05 1.83 1.85 1.85 1.85 1.55 1.83 1.83 1.85 1.83 1.85 137 137 139 137 139 0.15 0.15 0.16 0.15 0.16 1.83 1.83 1.85 1.83 1.85 137 137 139 137 139 0.15 0.15 0.16 0.15 0.16	22.2 21.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 I 20.5 0.988 I 20.5 0.988 I 20.5 0.988 I 33<	22.2 21.1 1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 I 20.5 0.988 I 20.5 0.988 I 20.5 1 33 <td colsp<="" td=""><td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 1 20.5 0.988 2 33 185 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.82 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32</td><td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 2 33 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 3</td><td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.6 10.5 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.85</td><td>22.2 21.1 1.1.1 20.5 0.988 1 2 33 33 33 33 33 33 33 33 3 2 1.1 1 2 3 2 2.0 2.0 2.0 2.0 2.0 1.0.5 10.5 1.0.6 10.6 10.6 1.0.5 1.1.1 10.6 10.6 10.6 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 3.2 2 2.0 2.0 2.0 2.0 2.0 2.0 <th< td=""></th<></td></td>	<td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 1 20.5 0.988 2 33 185 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.82 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32</td> <td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 2 33 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 3</td> <td>22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.6 10.5 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.85</td> <td>22.2 21.1 1.1.1 20.5 0.988 1 2 33 33 33 33 33 33 33 33 3 2 1.1 1 2 3 2 2.0 2.0 2.0 2.0 2.0 1.0.5 10.5 1.0.6 10.6 10.6 1.0.5 1.1.1 10.6 10.6 10.6 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 3.2 2 2.0 2.0 2.0 2.0 2.0 2.0 <th< td=""></th<></td>	22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 1 20.5 0.988 2 33 185 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.82 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32	22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 2 33 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 3	22.2 21.1 11.1 4491, 51-mm Constant Head; 2 in opening) 20.5 0.988 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.5 0.388 20.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.6 10.5 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.83 1.83 1.85 1.83 1.85	22.2 21.1 1.1.1 20.5 0.988 1 2 33 33 33 33 33 33 33 33 3 2 1.1 1 2 3 2 2.0 2.0 2.0 2.0 2.0 1.0.5 10.5 1.0.6 10.6 10.6 1.0.5 1.1.1 10.6 10.6 10.6 1.85 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 3.2 2 2.0 2.0 2.0 2.0 2.0 2.0 <th< td=""></th<>

Erosion Tech ET-GA-C C-System

June 11, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

TRI Job Reference Number:	E2366-93-07
Material(s) Tested:	1, Erosion Tech ET-GA-C Woven Geotextile -Geo Grid Composite
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (ASTM D 4491)

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

LABORATORY TEST RESULTS TRI Client: DDRF, TRI / Environmental

Material: Erosion Tech ET-GA-C System Woven Geotextile - Geo Grid Composite Material Sample Identification: ET-GA-C TRI Log #: E2366-93-07

PARAMETER	TEST R	EPLICA [.]	TE NUM	BER							MEAN	STD. DEV.
Thickness (ASTM D 5199)	1	2	3	4	5	6	7	8	9	10		
Thickness (mils)	91	81	84	87	84	94	83	94	82	87	87 81	5 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	3.31 7.70	3.28 7.63	3.32 7.72	3.31 7.70	3.20 7.44	3.37 7.84	3.28 7.63	3.37 7.84	3.27 7.61	3.35 7.79	3.31 7.69	0.05 0.12
Grab Tensile Properties (ASTM D	4632)											
MD - Tensile Strength (lbs) TD - Tensile Strength (lbs)	302 173	278 169	303 201	302 185	306 203	313 192	267 179	295 164	274 169	321 171	296 181	18 14
MD - Elong. @ Max. Load (%) TD - Elong. @ Max. Load (%)	17 11	19 9	20 17	19 12	19 17	20 19	19 13	19 15	16 13	18 14	19 14	1 3
Apparent Opening Size (ASTM D	4751)											
Opening Size Diameter (mm) Sieve No.	0.418 40	0.415 40	0.418 40	0.415 40	0.417 40						0.417 40	0.001

MD Machine Direction TD Transverse Direction

White Spray paint marks area where posts were attached to fabric had been avoided for index testing

LABORATORY TEST RESULTS TRI Client: DDRF, TRI / Environmental

Material: Erosion Tech ET-GA-C Woven Geotextile - Geo Grid Composite Material Sample Identification: ET-GA-C TRI Log #: E2366-93-07

PARAMETER	TEST RI		TE NUM	BER							MEAN	STD. DEV.
Percent Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Open Area (%)	13.50										13.50	
Constant Head Permittivity (ASTM	D 4491, 5	1-mm C	onstant	Head;	2 in ope	ning)						
Water Temp. (C):	20.2											
Correction Factor:	1.00											
Test Speciemn No. >:			1					2				
Thickness (mils)	80.7	80.7	80.7	80.7	80.7	85.9	85.9	85.9	85.9	85.9		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	12.8	12.8	12.8	12.8	12.8	13.4	13.3	13.4	13.3	13.4		
Specimen Permittivity @20°C (sec-1)	1.54	1.54	1.54	1.54	1.54	1.47	1.48	1.47	1.48	1.47		
Specimen Flow rate (GPM/ft2)	115	115	115	115	115	110	111	110	111	110		
Specimen Permeability (cm/s)	0.31	0.31	0.31	0.31	0.31	0.30	0.30	0.32	0.32	0.32		
Test Speciemn No. >:			3					4				
Thickness (mils)	81.8	81.8	81.8	81.8	81.8	80.7	80.7	80.7	80.7	80.7		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	13.3	13.3	13.4	13.3	13.0	12.3	12.3	12.3	12.2	12.3		
Specimen Permittivity @20°C (sec-1)	1.48	1.48	1.47	1.48	1.51	1.60	1.60	1.60	1.61	1.60		
Specimen Flow rate (GPM/ft2)	111	111	110	111	113	120	120	120	121	120		
Specimen Permeability (cm/s)	0.31	0.31	0.30	0.31	0.31	0.33	0.33	0.33	0.33	0.33		
			TEMPERATURE					Pei	mittivit	1.52		
			CORRECTED					Flow	rate (GP	114		
				VALUES	5			Perme	eability	(cm/s)	0.32	

White Spray paint marks area where posts were attached to fabric had been avoided for index testing

BELTON BELTECH 935 Type A. Type B

May 17, 2012

Mail To:

Bill To:

<= Same

Mr. C. Joel Sprague DDRF , TRI / Environmental P.O. Box 9192 Greenville, SC 29604

email: jsprague@tri-env.com

Dear Mr. Sprague:

Thank you for consulting TRI/Environmental, Inc. (TRI) for your geosynthetics testing needs. TRI is pleased to submit this final report for laboratory testing.

)

TRI Job Reference Number:	E2366-72-02
Material(s) Tested:	1, Beltech 1935 Woven Geotextile
Test(s) Requested:	Thickness (ASTM D 5199) Mass/Unit Area (ASTM D 5261) Grab Tensile (ASTM D 4632) Apparent Opening Size (ASTM D 4751) Percent Open Area (COE Method) Constant Head Permittivity (ASTM D 4491

If you have any questions or require any additional information, please call us at 1-800-880-8378.

Sincerely,

Mansukh Patel Sr. Laboratory Coordinator Geosynthetic Services Division www.GeosyntheticTesting.com

TRI Client: DDRF , TRI / Environmental

Material: Beltech 1935 Woven Geotextile Sample Identification: Beltech 1935 TRI Log #: E2366-72-02

PARAMETER	TEST R	EPLICA ⁻	TE NUM	IBER							MEAN	STD. DEV.
Thickness (ASTM D 5199)	1	2	3	4	5	6	7	8	9	10		
Thickness (mils)	15	19	16	19	17	15	16	17	16	19	17 15	2 << min
Mass/Unit Area (ASTM D 5261)												
5" diameter circle (grams) Mass/Unit Area (oz/sq.yd)	1.51 3.51	1.53 3.56	1.52 3.54	1.48 3.44	1.49 3.47	1.47 3.42	1.49 3.47	1.47 3.42	1.42 3.30	1.41 3.28	1.48 3.44	0.04 0.09
Grab Tensile Properties (ASTM D	9 4632)											
MD - Tensile Strength (lbs) TD - Tensile Strength (lbs) MD - Elong. @ Max. Load (%) TD - Elong. @ Max. Load (%)	177 150 33 21	182 166 35 21	184 157 33 21	189 155 34 20	175 161 33 21	168 167 28 21	160 165 29 21	176 150 29 21	164 149 27 19	172 147 28 19	175 157 31 20	9 8 3 1
Apparent Opening Size (ASTM D	4751)	21	21	20	21	21	21	21	10	10	20	
Opening Size Diameter (mm) Sieve No.	0.501 30	0.388 40	0.537 30	0.564 30	0.707 25						0.539 30	0.115

MD Machine Direction TD Transverse Direction

TRI Client: DDRF , TRI / Environmental

Material: Beltech 1935 Woven Geotextile Sample Identification: Beltech 1935 TRI Log #: E2366-72-02

	-			BEK							MEAN	DEV.
Persont Open Area (COE Method)	1	2	3	4	5	6	7	8	9	10		
Percent Open Area (COE Method)												
Open Area (%)	3.83	1.21	4.83								3.29	
Constant Head Permittivity (ASTM D	4491, 5 1	l-mm C	onstant	Head; 2	2 in ope	ning)						
Water Temp. (C):	20											
Correction Factor:	1.000											
Test Speciemn No. >:			1					2				
Thickness (mils)	16.4	16.4	16.4	16.4	16.4	16.5	16.5	16.5	16.5	16.5		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	53.2	53.8	53.8	54.3	54.3	68.6	69.1	69.1	69.7	70.2		
Specimen Permittivity @20°C (sec-1)	0.37	0.37	0.37	0.36	0.36	0.29	0.28	0.28	0.28	0.28		
Specimen Flow rate (GPM/ft2)	27.7	27.4	27.4	27.1	27.1	21.5	21.3	21.3	21.1	21.0		
Specimen Permeability (cm/s)	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01		
Test Speciemn No. >:			3					4				
Thickness (mils)	17.9	17.9	17.9	17.9	17.9	17.5	17.5	17.5	17.5	17.5		
Volume Collected (liters)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Time (s)	56.9	57.5	57.0	57.5	57.5	85.5	85.1	85.5	86.0	85.4		
Specimen Permittivity @20°C (sec-1)	0.35	0.34	0.35	0.34	0.34	0.23	0.23	0.23	0.23	0.23		
Specimen Flow rate (GPM/ft2)	25.9	25.6	25.8	25.6	25.6	17.2	17.3	17.2	17.1	17.2		
Specimen Permeability (cm/s)	0.02	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01		
		1										
			TEMPERATURE					Per	y (s-1)	0.31		
			CORRECTED					Flow r	WI/ft2)	22.9		
				VALUES	>			Perme	eability	cm/s)	0.01	