PROPOSED SUBDIVISION
(A COMMON DEVELOPMENT)
FOR
BARGAIN BUYS STORES DEVELOPMENT
AT 2700 SOUTH US HIGHWAY 41, TIFTON,
TIFT COUNTY, GEORGIA 31794
IMPAIRED STREAM SEGMENT NOTE

Defining the boundaries of the impaired stream segment in which storm water will flow. This project shall comply with the following clause:

- No construction shall take place within the impaired stream segment, as defined by the EPA.

EROSION AND SEDIMENT CONTROL PLAN

CLEARING PHASE

- Total area disturbed = 85,753 sq. ft.
- Projected area disturbed = 1,969 acres

FERTILIZER REQUIREMENTS

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>TYPE OF FERTILIZER</th>
<th>N-P-K</th>
<th>YEAR</th>
<th>RATE</th>
<th>N TOP DRESSING</th>
<th>P TOP DRESSING</th>
<th>K TOP DRESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOL SEASON GRASSES</td>
<td>FIRST</td>
<td>6-12-12</td>
<td>1500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td>500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td></td>
</tr>
<tr>
<td>COOL SEASON GRASSES</td>
<td>SECOND</td>
<td>6-12-12</td>
<td>1500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td>500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td></td>
</tr>
<tr>
<td>COOL SEASON GRASSES</td>
<td>MAINTENANCE</td>
<td>6-12-12</td>
<td>1500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td>500 lbs./ac.</td>
<td>1000 lbs./ac.</td>
<td></td>
</tr>
</tbody>
</table>

Erosion Control Devices

- Use erosion control devices to prevent soil erosion during construction activities.
- Ensure all erosion control measures are installed prior to land-disturbing activities.

Construction Schedule

- Activity: Clearing & Grubbing
- Construction Schedule:
 - Initial Perimeter and Sediment Storage BMP's
 - Maintenance of BMP's

Sanitary Sewer Line

- Location: This project includes a sanitary sewer line that requires installation according to local codes.

Legend

- IRON PIN FOUND
- IRON PIN SET
- PROPERTY LINE
- POWER LINE
- SANITARY SEWER LINE
- WATER LINE
- CONTOUR LINE, EXISTING
- CONTOUR LINE, FINISH
- CLEARING LIMIT LINE
- CLEARING LIMIT LINE

Erosion Control Certification

- Certified Professional: Harry Highball
- Certification Number: PE123456
- Certification Date: December 11, 2018

Site Location Sketch

- Site Location Sketch Not to Scale

DRAWING 4

- Erosion and Sediment Control Plan

Now Intellectual Property

- Copyright © 2018

GRAPHIC SCALE

- Scale: 1" = 60'

EROSION CONTROL CERTIFICATION

I certify under penalty of law that this plan was prepared after a site visit to the locations described herein by myself or my authorized agent, under my supervision.

By ____________________________

HARRY HIGHBALL
REGISTERED GEORGIA ENGINEER No. PE123456
LEVEL II CERTIFIED DESIGN PROFESSIONAL - CERTIFICATION NUMBER 0000001234

NOTE:

The installation of erosion and sedimentation control measures and practices shall occur prior to land-disturbing activities.

BEING LOCATED ADJACENT TO, AND DISCHARGING STORM WATER INTO AN IMPAIRED STREAM SEGMENT, THIS PROJECT SHALL COMPLY WITH THE FOLLOWING CLAUSE:

- Waters Permit No. GAR1000003, Part III, Section C. 2.
- Irregularities or contributions to a violation of State Water Quality Standards. The Plan must include the following best management practices (BMPs) for those areas of the site which discharge to the impaired stream segment:
 - Use erosion control devices to prevent soil erosion during construction activities.
 - Ensure all erosion control measures are installed prior to land-disturbing activities.

CLEARING & GRUBBING

- Grading
- Basis
- Grading
- Remove Temporary Erosion Control

BASE PAVING

- Erosion Control Devices
- Fine Grading & Landscaping
- Remove Temporary Erosion Control
- Permanent Vegetation

INFRASTRUCTURE CONSTRUCTION (INCL. UTILITIES)

- Site Location Sketch
- Not to Scale

IMPLEMENTATION PLAN

- A two phase implementation plan for securing the site for the project.
- Minimum Clearing:

 - 24" of water depth
 - 12" of depth of existing water

SITE LOCATION SKETCH

- Not to Scale

BARGAIN BUYS STORES DEVELOPMENT

- SEND TIFT, GEORGIA

NOT TO SCALE

- Site Location Sketch

LEGEND

- IRON PIN FOUND
- IRON PIN SET
- PROPERTY LINE
- POWER LINE
- SANITARY SEWER LINE
- WATER LINE
- CONTOUR LINE, EXISTING
- CONTOUR LINE, FINISH
- CLEARING LIMIT LINE
- CLEARING LIMIT LINE

FERTILIZER REQUIREMENTS

- Total area disturbed of site = 85,753 square feet
- Percentage impervious area = 40% < 50%

IMPAIRED STREAM SEGMENT IMPERVIOUS SURFACE CALCULATION

- Total planned site disturbance = 69,664 square feet
- Percentage impervious area = 46% < 50%

IMPACTED STREAM SEGMENT IMPERVIOUS SURFACE CALCULATION

- Total planned site disturbance = 69,664 square feet
- Percentage impervious area = 46% < 50%

FERTILIZER REQUIREMENTS

- Total area disturbed of site = 85,753 square feet
- Percentage impervious area = 40% < 50%
IN ORDER TO ENSURE THAT THE PERMITTEE'S DISCHARGES DO NOT CAUSE OR CONTRIBUTE TO A VIOLATION OF STATE WATER QUALITY STANDARDS, THE PLAN MUST INCLUDE THE FOLLOWING BEST MANAGEMENT PRACTICES (BMPs) FOR THOSE AREAS OF THE SITE WHICH DISCHARGE TO THE IMPAIRED STREAM SEGMENT:

a. USE ENETRALORE IN THE TEMPORARY SEDIMENT BASIN/RETROFITTED STORM WATER MANAGEMENT BASIN TO AT LEAST DOUBLE THE CONVENTIONAL FLOW PATH LENGTH TO THE OUTLET STRUCTURE.

b. INSTALL SOD FOR A MINIMUM 20 FOOT WIDTH, IN LIEU OF SEEDING, AFTER FINAL GRADING ALONG THE SITE PERIMETER WHEREVER STORM WATER MAY BE DISCHARGED.

c. USE BAFFLES IN THE TEMPORARY SEDIMENT BASIN/RETROFITTED STORM WATER MANAGEMENT BASIN TO AT LEAST DOUBLE THE CONVENTIONAL FLOW PATH LENGTH TO THE OUTLET STRUCTURE.

d. PLACE A LARGE SIGN (MINIMUM 4 FT X 8 FT) BY THE ACTUAL START DATE OF CONSTRUCTION, ON THE SITE VISIBLE FROM THE ROADWAY IDENTIFYING THE CONSTRUCTION SITE, THE PERMITTEE(S), THE CONTACT PERSON(S) AND THEIR TELEPHONE NUMBER(S), AND THE PERMITTEE-HOSTED WEB SITE WHERE THE PLAN CAN BE VIEWED.

e. LIMIT THE TOTAL PLANNED SITE DISTURBANCE TO LESS THAN 50% IMPERVIOUS SURFACES (EXCLUDING ANY STATE MANDATED BUFFER AREAS FROM SUCH CALCULATIONS). SEE CALCULATION BELOW.

f. INSTALL SOD FOR A MINIMUM 20 FOOT WIDTH, IN LIEU OF SEEDING, AFTER FINAL GRADING ALONG THE SITE PERIMETER WHEREVER STORM WATER MAY BE DISCHARGED.

THE INSTALLATION OF EROSION AND SEDIMENTATION CONTROL MEASURES AND PRACTICES SHALL OCCUR PRIOR TO LAND-DISTURBING ACTIVITIES.

FERTILIZER REQUIREMENTS

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>TYPE OF FERTILIZER</th>
<th>YEAR</th>
<th>APPLICATION RATE</th>
<th>N TOP DRESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOL SEASON</td>
<td>6-12-12</td>
<td>1/1-12-12</td>
<td>0-100 lbs/ac.</td>
<td>30 lbs/ac.</td>
</tr>
<tr>
<td>WARM SEASON</td>
<td>10-10-10</td>
<td>1/1-10-10</td>
<td>0-100 lbs/ac.</td>
<td>30 lbs/ac.</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>6-12-12</td>
<td>1/1-12-12</td>
<td>0-100 lbs/ac.</td>
<td>30 lbs/ac.</td>
</tr>
</tbody>
</table>

TOTAL DISTURBED AREA OF SITE = 65,664 SQUARE FEET

PERCENTAGE IMPERVIOUS AREA = 46% - 50%.
IMPAIRED STREAM SEGMENT NOTE

The installation of erosion and sedimentation control measures and practices shall occur prior to land-disturbing activities.

FERTILIZER REQUIREMENTS

<table>
<thead>
<tr>
<th>TYPE OF SPECIES</th>
<th>YEAR</th>
<th>N-P-K</th>
<th>RATE</th>
<th>N TOP DRESSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRASSES</td>
<td>FIRST</td>
<td>6-12-12</td>
<td>1500 lbs/ac.</td>
<td>50-100 lbs/ac. *1</td>
</tr>
<tr>
<td>egrasses</td>
<td>SECOND</td>
<td>6-12-12</td>
<td>1000 lbs/ac.</td>
<td>50-100 lbs/ac. *2</td>
</tr>
</tbody>
</table>

*1 APPLY IN SPRING FOLLOWING SEEDING.
*2 APPLY IN SPLIT APPLICATIONS WHEN HIGH RATES ARE USED.
*6 APPLY WHEN PLANTS GROW TO A HEIGHT OF 2 TO 4 INCHES.

IMPAIRED STREAM SEGMENT IMPERVIOUS SURFACE CALCULATION

h. TOTAL PLANNED SITE IMPERVIOUS AREA = 31,851 SQUARE FEET
TOTAL DISTURBED AREA OF SITE = 69,664 SQUARE FEET
PERCENTAGE IMPERVIOUS AREA = 46% < 50%.
CONSTRUCTION SCHEDULE

<table>
<thead>
<tr>
<th>Activity</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing & Grubbing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Paving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion Control Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Grading & Landscaping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove Temp. Erosion Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Location Sketch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drawn by Jan Jacoby</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drawn by GSWCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: THE INSTALLATION OF EROSION AND SEDIMENTATION CONTROL MEASURES AND PRACTICES SHALL OCCUR PRIOR TO LAND-DISTURBING ACTIVITIES.

DRAINAGE AREA LEGEND:

- IMPEVIOUS AREA
- PERVIOUS AREA

ENTIRE SITE = 1.66 Ac.
WEIGHTED C = 0.23
0.10/100 = 0.10%
5.00/403 = 1.24%

LOT 1 AREA
72,183 SQ. FEET
1.657 ACRES

BARGAIN BUYS STORES
DEVELOPMENT
TIFT, GEORGIA

HARRY HIGHBALL
CONSULTING ENGINEERS

OWNER
A. DUNLOP

COUNTY, STATE
TIFT, GEORGIA

DATE
DECEMBER 11, 2018

LAND DISTRICT
6th

REVISION NUMBER
REQUESTED BY
GSWCC
CONSTRUCTION SCHEDULE

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Perimeter and Sediment Storage BMP's</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
</tr>
<tr>
<td>Maintenance of BMP's</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
<td>2019</td>
</tr>
</tbody>
</table>

NOTE:
The installation of erosion and sedimentation control measures and practices shall occur prior to land-disturbing activities.

SITE LOCATION SKETCH

NOT TO SCALE

DRAWING 8
EROSION AND SEDIMENT CONTROL PLAN
POST-DEVELOPMENT
DRAINAGE AREAS

BARGAIN BUYS STORES DEVELOPMENT

HARRY HIGHBALL CONSULTING ENGINEERS

OWNER: A. DUNLOP COUNTY: Tift, Georgia

CREATED BY: JAN JACOBY LAND LOT: 336

DATE: DECEMBER 11, 2018 LAND DISTRICT: 6th

REVISED NUMBER: 000000001234 REQUESTED BY: GSWCC

DRAWER: GSWCC REVISION NUMBER: 000000000000

DRAINAGE AREA LEGEND:

- IMPERVIOUS AREA
- PERVIOUS AREA

LEGEND:
- IRON PIN FOUND
- IRON PIN SET
- PROPERTY LINE
- POWER LINE
- SANITARY SEWER LINE
- WATER LINE
- CONTOUR LINE, EXISTING
- CONTOUR LINE, FINISH
- CLEARING LIMIT LINE

GRAPHIC SCALE

SCALE: 1" = 60'

Entire Site = 1.66 Ac.
Weighted C&O = 0.66
1.17/100 = 11.7%
3.62/283 = 1.26%

OUTPARCEL AREA
85,733 SQ. FEET
1.969 ACRES

OUTPARCEL

LOT 1 AREA
72,183 SQ. FEET
1.657 ACRES

PROPOSED BUILDING

SEAL

EROSION CONTROL DEVICES

- FINE GRADING & LANDSCAPING
- REMOVE TEMP. EROSION CONTROL
- PERMANENT VEGETATION
- TEMPORARY VEGETATION

INFRASTRUCTURE CONSTRUCTION (INCL. UTILITIES)

- SANITARY SEWER LINE
- PROPERTY LINE
- POWER LINE
- WATER LINE

CONTOUR LINE, EXISTING

CONTOUR LINE, FINISH

CLEARING LIMIT LINE

2" SAMPLE WATER MARKER (临床, EXISTING AUTHORITY OF STREAM AGRIP)

2" SAMPLE WATER MARKER (临床, EXISTING AUTHORITY OF STREAM AGRIP)

NOTE:

- CLEARING & GRUBBING
- GRADING
- BASE
- PAVING
- EROSION CONTROL DEVICES

SITE LOCATION SKETCH

NOT TO SCALE

BARGAIN BUYS STORES DEVELOPMENT

HARRY HIGHBALL CONSULTING ENGINEERS

OWNER: A. DUNLOP COUNTY: Tift, Georgia

CREATED BY: JAN JACOBY LAND LOT: 336

DATE: DECEMBER 11, 2018 LAND DISTRICT: 6th

REVISED NUMBER: 000000000000 REQUESTED BY: GSWCC

DRAWER: GSWCC REVISION NUMBER: 000000000000

DRAINAGE AREA LEGEND:

- IMPERVIOUS AREA
- PERVIOUS AREA

LEGEND:
- IRON PIN FOUND
- IRON PIN SET
- PROPERTY LINE
- POWER LINE
- SANITARY SEWER LINE
- WATER LINE
- CONTOUR LINE, EXISTING
- CONTOUR LINE, FINISH
- CLEARING LIMIT LINE

GRAPHIC SCALE

SCALE: 1" = 60'

Entire Site = 1.66 Ac.
Weighted C&O = 0.66
1.17/100 = 11.7%
3.62/283 = 1.26%

OUTPARCEL AREA
85,733 SQ. FEET
1.969 ACRES

OUTPARCEL

LOT 1 AREA
72,183 SQ. FEET
1.657 ACRES

PROPOSED BUILDING

SEAL

EROSION CONTROL DEVICES

- FINE GRADING & LANDSCAPING
- REMOVE TEMP. EROSION CONTROL
- PERMANENT VEGETATION
- TEMPORARY VEGETATION

INFRASTRUCTURE CONSTRUCTION (INCL. UTILITIES)

- SANITARY SEWER LINE
- PROPERTY LINE
- POWER LINE
- WATER LINE

CONTOUR LINE, EXISTING

CONTOUR LINE, FINISH

CLEARING LIMIT LINE

2" SAMPLE WATER MARKER (临床, EXISTING AUTHORITY OF STREAM AGRIP)

2" SAMPLE WATER MARKER (临床, EXISTING AUTHORITY OF STREAM AGRIP)
A. DUNLOP
OWNER
HARRY HIGHBALL
CONSULTING ENGINEERS
COUNTY, STATE
336 LAND LOT
6th LAND DISTRICT
DECEMBER 11, 2018
DATE
JAN JACOBY
DRAWN BY
BARGAIN BUYS STORES DEVELOPMENT
TIFT, GEORGIA
REVISION NUMBER
REQUESTED BY
DATE
GSWCC
SEAL
EROSION CONTROL CERTIFICATION
I CERTIFY UNDER PENALTY OF LAW THAT THIS PLAN WAS PREPARED AFTER A SITE VISIT TO THE LOCATIONS DESCRIBED HEREIN BY MYSELF OR MY AUTHORIZED AGENT, UNDER MY SUPERVISION.
BY __
HARRY HIGHBALL REGISTERED GEORGIA ENGINEER No. PE123456
LEVEL II CERTIFIED DESIGN PROFESSIONAL - CERTIFICATION NUMBER 0000001234
DRAWING 9
EROSION AND SEDIMENT CONTROL
NOTES
SHEET #1
1. Dry straw or hay mulch and wood chips shall be applied uniformly by hand or by mechanized equipment. When mulch is used without seeding, mulch shall be placed according to the installation requirements for mulches.

2. If the area will eventually be covered with perennial vegetation, temporary grassing shall be applied at 1200 gallons per acre (or 1/4 gallon per sq. yd.).

3. Polyethylene film shall be anchor trenched at the top as necessary. Openings of the netting shall not be larger than 10% of the area. The edges of the disk should be dull enough not to cut the mulch or the underlying soil.

4. Cutback asphalt (slow curing) shall be applied at 1200 gallons per acre (or 1/4 gallon per sq. yd.). The asphalt emulsion shall be placed according to the installation requirements for asphalt. The edges of the disk should be dull enough not to cut the mulch or the underlying soil.

5. Driveway Outlet Protection for information regarding energy dissipators.

6. Channel linings shall be established or installed according to lines and grades established for the structure. The structure shall meet requirements of Gr - Grade stabilization structures are used to reduce or prevent excessive erosion by reducing the velocity to or by providing structures that can be placed between the riprap and base material. The rock riprap lining shall be installed according to standards specified in Riprap, Rock Riprap Lining.

7. Structures shall be installed according to standards specified in Riprap, Rock Riprap Lining. These structures are constructed of grouted and placed in the same manner, resulting in an erosive surface. These structures shall be placed between the riprap and base material. The structure shall be installed according to standards specified in Riprap, Rock Riprap Lining.

8. Drainage areas less than one square mile.

9. Sediment control devices shall be installed. Refer to specifications AASH-TO M288-96 Section 7.5, Permanent Erosion Control Vegetation, Ds4 - Disturbed Area Stabilization (With Vegetation), Ds4 - Disturbed Area Stabilization (With Vegetation).

10. Gravel pad shall have a minimum thickness of 6".
Seeding Rates for Temporary Seeding

<table>
<thead>
<tr>
<th>Species Type</th>
<th>Grass Type</th>
<th>Fertilizer Type</th>
<th>Fertilizer Rate</th>
<th>Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bermudagrass</td>
<td>Centipede</td>
<td>0-0-0</td>
<td>1500 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-10-10</td>
<td>800 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-12-12</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Bermudagrass</td>
<td>Bermudagrass</td>
<td>0-0-0</td>
<td>1300 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-10-10</td>
<td>700 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-12-12</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-10-10</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-12-12</td>
<td>200 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-10-10</td>
<td>200 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-12-12</td>
<td>100 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
</tbody>
</table>

Fertilizer Requirements

<table>
<thead>
<tr>
<th>Species Type</th>
<th>Grass Type</th>
<th>Fertilizer Type</th>
<th>Fertilizer Rate</th>
<th>Application Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bermudagrass</td>
<td>Centipede</td>
<td>0-0-0</td>
<td>1500 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-10-10</td>
<td>800 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-12-12</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Bermudagrass</td>
<td>Bermudagrass</td>
<td>0-0-0</td>
<td>1300 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-10-10</td>
<td>700 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>0-12-12</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-10-10</td>
<td>400 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-12-12</td>
<td>200 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-10-10</td>
<td>200 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-12-12</td>
<td>100 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-10-10</td>
<td>100 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
<tr>
<td>Centipede</td>
<td>Centipede</td>
<td>10-12-12</td>
<td>50 lbs./ac.</td>
<td>Deep Tillage</td>
</tr>
</tbody>
</table>

Seeding

1. Tillage should be done in the spring after the soil has warmed sufficiently to allow sufficient germination and to avoid any seed turning over the winter.
2. Tillage should be done at the proper depth as necessary.
3. Seed should be evenly distributed over the area to be seeded.

Fertilizer

1. Fertilizer should be applied at the proper rate as determined by the soil test.
2. Fertilizer should be applied uniformly over the area to be seeded.

Harrowing

1. Harrowing should be done at the proper depth as necessary to ensure proper seed placement.
2. Harrowing should be done to ensure proper seed placement.

Lime

1. Lime should be applied at the proper rate as determined by the soil test.
2. Lime should be applied uniformly over the area to be seeded.

Establishing Seedlings

1. Seedlings should be planted at the proper depth as necessary to ensure proper seed placement.
2. Seedlings should be planted at the proper depth as necessary to ensure proper seed placement.

Maintenance

1. Maintenance should be done at the proper depth as necessary to ensure proper seed placement.
2. Maintenance should be done at the proper depth as necessary to ensure proper seed placement.

Erosion and Sediment Control

1. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.
2. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.

Types of Species

1. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.
2. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.

Erosion and Sediment Control

1. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.
2. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.

Types of Species

1. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.
2. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.

Erosion and Sediment Control

1. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.
2. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.

Types of Species

1. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.
2. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.

Erosion and Sediment Control

1. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.
2. Erosion and sediment control should be done at the proper depth as necessary to ensure proper seed placement.

Types of Species

1. Types of Species should be selected at the proper depth as necessary to ensure proper seed placement.
Ten years, vegetation, trees and other adequate materials shall be left undisturbed. Tree and shrub stumps are to be removed, the area protected by a combination of temporary fencing and vegetation, and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Cut-off Trench

A cut-off trench shall be excavated along the centerline of the embankment. The minimum depth shall be 2 feet.

Embankment

The fill material shall be spread and compacted to at least the same density as the adjacent earth fill embankments. The minimum depth shall be 2 feet.

A cut-off trench will be excavated along the centerline of the drainage area and the bottom of the trench shall be at least 2 feet deep. The cut-off trench shall be backfilled with approved materials and compacted to at least the same density as the adjacent earth fill embankments.

The minimum depth of the embankment shall be 2 feet. The fill material shall be taken from approved areas shown on the plans. The embankment shall be constructed with a minimum of 3 feet of compacted material. The embankment shall be compacted to at least the same density as the adjacent earth fill embankments. The minimum depth shall be 2 feet.

The fill material shall be taken from approved areas shown on the plans. The embankment shall be constructed with a minimum of 3 feet of compacted material. The embankment shall be compacted to at least the same density as the adjacent earth fill embankments. The minimum depth shall be 2 feet.

Emergency Spillway

The emergency spillway shall be installed in accordance with the plans. The emergency spillway shall consist of a concrete spillway and a concrete riser. The emergency spillway shall be designed to withstand the maximum flow that may occur during construction. The emergency spillway shall be designed to withstand the maximum flow that may occur during construction. The emergency spillway shall be designed to withstand the maximum flow that may occur during construction.

Vegetation Treatment

The vegetation treatment shall be installed in accordance with the plans. The vegetation treatment shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Southern Erosion Control

A Southern Erosion Control Plan shall be prepared for all areas where erosion control measures are to be installed. The Southern Erosion Control Plan shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Vegetation Treatment

The vegetation treatment shall be installed in accordance with the plans. The vegetation treatment shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Southern Erosion Control

A Southern Erosion Control Plan shall be prepared for all areas where erosion control measures are to be installed. The Southern Erosion Control Plan shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Vegetation Treatment

The vegetation treatment shall be installed in accordance with the plans. The vegetation treatment shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Southern Erosion Control

A Southern Erosion Control Plan shall be prepared for all areas where erosion control measures are to be installed. The Southern Erosion Control Plan shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Vegetation Treatment

The vegetation treatment shall be installed in accordance with the plans. The vegetation treatment shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.

Southern Erosion Control

A Southern Erosion Control Plan shall be prepared for all areas where erosion control measures are to be installed. The Southern Erosion Control Plan shall consist of a combination of erosion control measures and trees and shrubs shall be allowed to grow. After construction, the area shall be left undisturbed as far as possible.
Elev. = 358.64 ft

1. For Q, V, S relationship see the chart on the following page.

2. For a given Hp, a decrease in the exit slope as given in the table decreases spillway discharge, but increasing the exit slope (So) does not increase discharge. If an exit slope (So) is steeper than S is used, then velocity (Vo) in the exit channel will increase according to the following relationship:

\[Vo = V(So/S) \]

Vo = Velocity, in feet per second, that will exist in Channel below Control Section, at Design Q, if constructed to slope (S) = 18" = 0.3

So = Exit Slope = Flattest Slope (S), in %, allowable for Channel below Control Section. (Table 6-22.4)

S = Entry Slope

Q = Total Discharge, in cfs.

3. Seed Blanket to prevent erosion of discharge area to protect sod.

4. Rods and Jam Nuts for C.S. Pipe

5. Core Trench

6. Optional with sod or riprap

7. Angle of stub to be shown

8. Erosion Control Certification

9. Level Portion

10. Drain (optional)

11. Berm

12. Water Surface

13. Exit Channel

14. Inlet Channel

15. Wing Dike

16. Water Surface

17. Excavated Earth Spillway

18. Entry Slope =

19. Exit Slope =

20. Flattest Slope (S), in %, allowable for Channel below Control Section. (Table 6-22.4)

21. Difference in Elevation between Crest of Earth Spillway at the Control Section and Water Surface in reservoir, in feet. = Hp

22. Bottom Width of Earth Spillway at the Control Section, in feet. = b

23. Total Discharge, in cfs. = Q

24. Storm Drain Outlet Protection

25. Pipe Outlet to Well-defined Channel

26. Pipe Outlet to Flat Area-
GEORGIA UNIFORM CODING SYSTEM

FOR SOIL EROSION AND SEDIMENT CONTROL PRACTICES

GEORGIA SOIL AND WATER CONSERVATION COMMISSION

STRUCTURAL PRACTICES

<table>
<thead>
<tr>
<th>CODE</th>
<th>PRACTICE</th>
<th>DETAIL</th>
<th>MAP SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>CHECKDAM</td>
<td></td>
<td></td>
<td>A small temporary barrier or dam constructed across a swale, drainage ditch or area of concentrated flow.</td>
</tr>
<tr>
<td>Ch</td>
<td>CHANNEL STABILIZATION</td>
<td></td>
<td></td>
<td>Improving, constructing or stabilizing an open channel, existing stream, or ditch.</td>
</tr>
<tr>
<td>Co</td>
<td>CONSTRUCTION EXIT</td>
<td></td>
<td></td>
<td>A crushed stone pad located at the construction site exit to provide a place for removing mud from tires thereby protecting public streets.</td>
</tr>
<tr>
<td>Sd1</td>
<td>SEDIMENT BARRIER</td>
<td></td>
<td></td>
<td>A barrier to prevent sediment from leaving the construction site. It may be sandbags, bales of straw or hay, brush, logs and poles, gravel, or a silt fence.</td>
</tr>
<tr>
<td>Sd3</td>
<td>TEMPORARY SEDIMENT BASIN</td>
<td></td>
<td></td>
<td>A basin created by excavation or a dam across a waterway. The surface water runoff is temporarily stored allowing the bulk of the sediment to drop out.</td>
</tr>
<tr>
<td>Sk</td>
<td>FLOATING SURFACE SKIMMER</td>
<td></td>
<td></td>
<td>A buoyant device that releases/drain water from the surface of sediment ponds, traps, or basins at a controlled rate of flow.</td>
</tr>
<tr>
<td>St</td>
<td>STORMDRAIN OUTLET PROTECTION</td>
<td></td>
<td></td>
<td>A paved or short section of riprap channel at the outlet of a storm drain system preventing erosion from the concentrated runoff.</td>
</tr>
</tbody>
</table>

VEGETATIVE PRACTICES

<table>
<thead>
<tr>
<th>CODE</th>
<th>PRACTICE</th>
<th>DETAIL</th>
<th>MAP SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ds1</td>
<td>DISTURBED AREA STABILIZATION WITH MULCHING (ONLY)</td>
<td></td>
<td>Ds1</td>
<td>Establishing temporary protection for disturbed areas where seedlings may not have a suitable growing season to produce an erosion retarding cover.</td>
</tr>
<tr>
<td>Ds2</td>
<td>DISTURBED AREA STABILIZATION WITH TEMP SEEDING</td>
<td></td>
<td>Ds2</td>
<td>Establishing a temporary vegetative cover with fast growing seedlings on disturbed areas.</td>
</tr>
<tr>
<td>Ds3</td>
<td>DISTURBED AREA STABILIZATION WITH PERM SEEDING</td>
<td></td>
<td>Ds3</td>
<td>Establishing a permanent vegetative cover such as trees, shrubs, vines, grasses, or legumes on disturbed areas.</td>
</tr>
<tr>
<td>Ds4</td>
<td>DISTURBED AREA STABILIZATION (SODDING)</td>
<td></td>
<td>Ds4</td>
<td>A permanent vegetative cover using sods on highly erodible or critically eroded lands.</td>
</tr>
<tr>
<td>Du</td>
<td>DUST CONTROL ON DISTURBED AREAS</td>
<td></td>
<td>Du</td>
<td>Controlling surface and air movement of dust on construction site, roadways and similar sites.</td>
</tr>
</tbody>
</table>

For Soil Erosion and Sediment Control Practices.

Unifying Coding System.

Established by the Georgia Soil and Water Conservation Commission.

Structural Practices:
- Check Dam
- Channel Stabilization
- Construction Exit
- Sediment Barrier
- Temporary Sediment Basin
- Floating Surface Skimmer
- Storm Drain Outlet Protection

Vegetative Practices:
- Disturbed Area Stabilization with Mulching (Only)
- Disturbed Area Stabilization with Temp Seeding
- Disturbed Area Stabilization with Perm Seeding
- Disturbed Area Stabilization (Sodding)
- Dust Control on Disturbed Areas
DETAILS OF OUTLET CONTROL STRUCTURE: POND
N.T.S.
MATERIALS USED TO CONSTRUCT TEMPORARY CONCRETE WASHOUT FACILITIES SHALL BE REMOVED FROM THE SITE OF THE WORK AND DISPOSED OF OR RECYCLED.

HOLES, DEPRESSIONS OR OTHER GROUND DISTURBANCES CAUSED BY THE REMOVAL OF THE TEMPORARY CONCRETE WASHOUT FACILITIES SHALL BE BACKFILLED, REPAIRED, AND STABILIZED TO PREVENT EROSION.

NOTES:
1. ACTUAL LAYOUT DETERMINED IN THE FIELD.
2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30' OF THE TEMPORARY CONCRETE WASHOUT FACILITY.